Skip to main content
Log in

Dislocation contribution to hysteresis mechanism of internal friction at homological temperatures below 0.2

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The computations of the internal friction background arising due to the hysteresis mechanism of dislocation mobility in metallic systems at low temperatures carried out by different model representations are presented. It is shown that the general background of internal friction contains not only the losses due to hysteresis mechanism of oscillatory motions but also the losses due to other mechanisms of the structure defect mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Postnikov, “Temperature Dependence of the Internal Friction of Pure Metals and Alloys,” Usp. Fiz. Nauk 66 (1), 43–77 (1958).

    Article  Google Scholar 

  2. L. N. Aleksandrov and V. S. Mordyuk, Internal Friction and Physical Properties of Refractory Metal (Mordov. Knizhn. Izdat., Saransk, 1965) [in Russian].

    Google Scholar 

  3. V. A. Lomovskoi, “Local Dissipation Phenomena in Crystalline Forms of Boron “Molecular Mobility and Dissipative Phenomena in Nonorganic Glass-Forming Systems,” Izv. Ross. Akad. Nauk. Neorganich. Mater. 37 (12), 1454–1466 (2001).

    Google Scholar 

  4. A. A. Gorshkov, V. A. Lomovskoi, and E. N. Polyvanaya, “Regions of Local Inelasticity and Dissipative Phenomena in Some Boron Systems,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 87–105 (2005) [Mech. Solids (Engl. Transl.) 40 (3), 67–82 (2005)].

    Google Scholar 

  5. A. A. Gorshkov, V. A. Lomovskoi, and E. K. Naimi, “On the Nature of Internal Friction in Polycrystal Palladium,” Vestnik MITKhT 4 (5), 85–89 (2009).

    Google Scholar 

  6. N. N. Davidenkov, “On Energy Scattering in Vibration,” Zh. Tekhn. Fiz. 8 (5), 483–499 (1938).

    Google Scholar 

  7. G. S. Pisarenko, Oscillations of Metallic Systems with Regard to Imperfect Elasticity of Materials (Naukova Dumka, Kiev, 1970) [in Russian].

    Google Scholar 

  8. V. V. Matveev, Oscillation Damping in Deformable Bodies (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  9. I. L. Korchinskii, “Applied Dynamics of Building Structures,” Stroitelnaya Promyshlennost’, No. 5 (1947).

    Google Scholar 

  10. E. S. Sorokin, “AMethod for Considering Nonelastic Resistance of Material in Oscillation Calculations,” in Study of Structural Dynamics (Gostekhizdat, Moscow, 1951), pp. 5–90 [in Russian].

    Google Scholar 

  11. A. A. Il’yushin, Plasticity. Elastoplastic Deformations, Part 1 (OGIZ, Moscow–Leningrad, 1948) [in Russian].

    Google Scholar 

  12. A. A. Gorshkov, E. A. Korovaitseva, A.V. Korovaitsev, and V. A. Lomovskoi, “Modeling of the Process of Dissipative Losses in Rod Element of Quartz Resonator,” in XIX Intern. Sym. “Dynamical and Technological Problems of Structural Mechanics and Continua dedicated to A. G. Gorshkov, Vol. 2 (MAI, Moscow, 2013), pp. 82–94 [in Russian].

    Google Scholar 

  13. F. N. Tavadze (Editor), Internal Friction in Metallic Materials. Collection of papers (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  14. V. A. Lomovskoi, “Spectra of Internal Friction and Dissipative Mobility of Elements of Aggregate and Modifying Subsystems,” Materialoved. 4 (3), 3–12 (2007).

    Google Scholar 

  15. V. A. Lomovskoi, “Internal Friction in Studies of Interrelation ‘Chemical Structure–Physical Properties of Nanosystems’ Interrelation,” in Contemporary Problems of Physical Chemistry of Nanomaterials (Granitsa, Moscow, 2008), pp. 287–301 [in Russian].

    Google Scholar 

  16. J. Chadek, Creep in Metallic Materials (Academia, Prague, 1994; Mir, Moscow, 1987).

    Google Scholar 

  17. O. V. Kamaeva and V. M. Chernov, “Amplitude-Independent Dislocation Internal Friction under Random External Actions,” Fiz. Tverd. Tela 44 (9), 1601–1608 (2002) [Phys. Solid State (Engl. Transl.) 44 (9), 1676–1683 (2002)].

    Google Scholar 

  18. J. D. Eshelby, “Dislocations as a Cause of Mechanical Damping in Metals,” Proc. Roy. Soc. Ser. A 197, 396–416 (1949).

    Article  ADS  MATH  Google Scholar 

  19. Y. S. Kaehler, “The Influence of Dislocations and Impurities on the Damping and the Elastic Constants of Metal Single Crystals,” in Imperfections in Nearly Perfect Crystals (Wiley, New York, 1952).

    Google Scholar 

  20. G. J. Leibfried, “Über den Einfluss der thermisch angeregten Schwallwellen auf die plastische Deformation,” Phys. 127, 344 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Ya. Kravchenko, “Influence of Electrons on the Dislocation Deceleration in Metals,” Fiz. Tverd. Tela 8 (3), 927–935 (1966).

    Google Scholar 

  22. L. G. Merkulov (Editor), Ultrasonic Methods for Studying Dislocations (Izdat. Inostr. Lit., Moscow, 1963).

    Google Scholar 

  23. V. S. Postnikov, Internal Friction in Metals (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  24. A. A. Blistanov and M. P. Shaskol’skaya, “Influence of Dislocation Fixation on the Amplitude-Dependent Internal Friction in UF,” Fiz. Tverd. Tela 6 (3), 728–734 (1964).

    Google Scholar 

  25. K. Yamafuji and C. L. Bauer, “Diffusion-Controlled Dislocation Damping,” J. Appl. Phys. 36 (10), 3288–3290 (1965).

    Article  ADS  Google Scholar 

  26. J. C. Wartz and J. Weertman, “Modification of the Koehler–Granato–Lucke Dislocation Damping Theory,” J. Appl. Phys. 32 (10), 1860–1865 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorshkov.

Additional information

Original Russian Text © A.A. Gorshkov, E.A. Korovaitseva, V.A. Lomovskoi, 2017, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2017, No. 2, pp. 80–92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, A.A., Korovaitseva, E.A. & Lomovskoi, V.A. Dislocation contribution to hysteresis mechanism of internal friction at homological temperatures below 0.2. Mech. Solids 52, 184–194 (2017). https://doi.org/10.3103/S002565441702008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565441702008X

Keywords

Navigation