Skip to main content
Log in

Thermomechanical model of nonlocal deformation of a solid

  • Published:
Mechanics of Solids Aims and scope Submit manuscript


We use relations of rational thermodynamics of irreversible processes for a continuous medium with intrinsic state parameters and Eringen’s model of nonlocal theory of elasticity to study the approach to the construction of mathematical models of thermomechanical processes in a deformable body with regard to the effects of temporal and spatial nonlocality of the continuous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. R. A. Andrievskii and A. V. Ragulya, Nanostructural Materials (Akademiya,Moscow, 2005) [in Russian].

    Google Scholar 

  2. A. N. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  3. H. Kobayashi, Introduction to Nanotechnology (BINOM,Moscow, 2005) [in Russian].

    Google Scholar 

  4. Ch. P. Poole, and F. J. Owens, Introduction to Nanotechnology (Wiley, 2003; Tekhnosfera, Moscow, 2006).

    Google Scholar 

  5. R.W. Kelsall, Nanoscale Science and Technology (Wiley, 2005).

    Book  Google Scholar 

  6. J. Peddieson, G. R. Buchanon, and R. P. McNitt, “Application of Nonlocal Continuum Medium Models to Nanotechnology,” Int. J. Engng Sci. 41, 305–312 (2003).

    Article  Google Scholar 

  7. A.M. Krivtsov, Deformation and Failure of Rigid Bodies with Microstructure (Fizmatlit,Moscow, 2007) [in Russian].

    Google Scholar 

  8. I. A. Kunin, Theory of Elastic Media with Microstructure. Nonlocal Theory of Elasticity (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  9. M. Onemi, S. Iwasimidzu, K. Genka, et al., Introduction toMicromechanics (Metallurgiya,Moscow, 1987) [in Russian].

    Google Scholar 

  10. V. S. Zarubin and G. N. Kuvyrkin, MathematicalModels of ContinuumMechanics and Electrodynamics (Izdat. MGTU im. Baumana, Moscow, 2008) [in Russian].

    Google Scholar 

  11. V. S. Zarubin and G. N. Kuvyrkin, “Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect,” Teplofiz. Vysokikh Temp. 41 (2), 300–309 (2003) [High Tempr. (Engl. Transl.) 41 (2), 257–265 (2003)].

    Google Scholar 

  12. V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Thermomechanics (Fizmatlit,Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  13. V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, “Mathematical Model of a Nonlocal Medium with Internal State Parameters,” Inzh.-Fiz. Zh. 86 (4), 768–773 (2013) [J. Engng Phys. Thermophys. (Engl. Transl.) 86 (4), 820–826 (2013)].

    Google Scholar 

  14. G. N. Kuvyrkin and I. Yu. Savelieva, “MathematicalModel ofHeatConduction ofNew StructuralMaterials,” VestnikMGTU im. Baumana. Ser. Estestv. Nauki, No. 3, 72–85 (2010).

    Google Scholar 

  15. V. S. Zarubin and G. N. Kuvyrkin, “A ThermomechanicalModel of a Relaxing Solid Body Subjected to Time-Dependent Loading,” Dokl. Ross. Akad. Nauk 345 (2), 193–195 (1995) [Dokl. Phys. (Engl. Transl.) 40 (11), 600–602 (1995)].

    MATH  Google Scholar 

  16. A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York–Berlin–Heidelberg, 2002).

    MATH  Google Scholar 

  17. A. A. Pisano and P. Fuschi, “Closed Form Solution for a Nonlocal Elastic Bar in Tension [J],” Int. J. Solids Struct. 40 (2), 13–23 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Polizzotto, “Nonlocal Elasticity and Related Variational Principles,” Int. J. Solids Struct. 38 (2), 7359–7380 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. N. Kuvyrkin.

Additional information

Original Russian Text © G.N. Kuvyrkin, I.Yu. Savelieva, 2016, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2016, No. 3, pp. 20–27.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuvyrkin, G.N., Savelieva, I.Y. Thermomechanical model of nonlocal deformation of a solid. Mech. Solids 51, 256–262 (2016).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: