Skip to main content
Log in

Compression of an axisymmetric layer on a rigid mandrel in creep

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

An approximate solution describing the compression of an axisymmetric layer ofmaterial on a rigid mandrel under the equations of the creep theory is constructed. The constitutive equation is introduced so that the equivalent stress tends to a finite value as the equivalent strain rate tends to infinity. Such a constitutive equation leads to a qualitatively different asymptotic behavior of the solution near the mandrel surface, on which the maximum friction law is satisfied, compared with the well-known solution for the creep model based on the power-law relationship between the equivalent stress and the equivalent strain rate. It is shown that the solution existence depends on the value of one of the parameters contained in the constitutive equations. If the solution exists, then the equivalent strain rate tends to infinity as the maximum friction surface is approached, and the qualitative asymptotic behavior of the solution depends on the value of the same parameter. There is a range of variation of this parameter for which the qualitative behavior of the equivalent strain rate near the maximum friction surface coincides with the behavior of the same variable in ideally rigid-plastic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Johnson, “Complex-Stress Creep of Metals,” Metallurg. Rev. 5 (20), 447–506 (1960).

    Article  Google Scholar 

  2. A. M. Lokoshchenko, Modeling of Creep Process and Long-Term Strength of Metals (MGIU, Moscow, 2007) [in Russian].

    Google Scholar 

  3. M. F. Sa, A. M. Gomes, J. R. Correia, and N. Silvestre, “Creep Behavior of Pultruded GFRP Elements–Part 1: Literature Review and Experimental Study,” Comp. Struct. 93 (10), 2450–2459 (2011).

    Article  Google Scholar 

  4. G. W. Greenwood, “Reflections on Creep: A Review of the MST Archive,” Mater. Sci. Technol. 29 (8), 893–899 (2013).

    Article  Google Scholar 

  5. J. P. Rouse, F. Cortellino, W. Sun, et al., “Small Punch Creep Testing: Review of Modelling and Data Interpertation,” Mater. Sci. Technol. 29 (11), 1328–1345 (2013).

    Article  Google Scholar 

  6. M. Mondali and A. Abedian, “An Analytical Model for Stress Analysis of Short Fiber Composites in Power Law Creep Matrix,” Int. J. Nonlin.Mech. 57, 39–49 (2013).

    Article  Google Scholar 

  7. N. N. Malinin, Creep inMetal Working (Mashinostroenie,Moscow, 1986) [in Russian].

    Google Scholar 

  8. S. E. Aleksandrov, V. L. Danilov, and N. N. Chikanova, “On the Stagnation Zone in a Simulation of Axisymmetric Pressure Metal Forming under Creep,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 149–151 (2000) [Mech. Solids (Engl. Transl.) 35 (1), 127–129 (2000)].

    Google Scholar 

  9. Y. Tomita and R. Sowerby, “An Approximate Analysis for Studying the Plane Strain Deformation of Strain Rate SensitiveMaterials,” Int. J. Mech. Sci. 21, 505–516 (1979).

    Article  MATH  Google Scholar 

  10. N. Rebelo and S. Kobayashi, “A Coupled Analysis of Viscoplastic Deformation and Heat Transfer–II: Applications,” Int. J. Mech. Sci. 22, 707–718 (1980).

    Article  MATH  Google Scholar 

  11. S. A. Shesterikov and M. A. Yumasheva, “Specification of Equation of State in Creep Theory,” Izv. Akad. Nauk SSSR.Mekh. Tverd. Tela, No. 1, 86–91 (1984) [Mech. Solids. (Engl. Transl.)].

    Google Scholar 

  12. A. M. Lokoshchenko, K. A. Agakhi, and L. V. Fomin, “Cantilever Creep in Bending in Aggressive Media,” Probl. Mashinostr. Nadezh. Mashin, No. 4, 70–75 (2013).

    Google Scholar 

  13. A. J. M. Spencer, “A Theory of the Failure of Ductile Materials Reinforced by Elastic Fibres,” Int. J. Mech. Sci. 7, 197–209 (1965).

    Article  Google Scholar 

  14. S. E. Aleksandrov and Y.-R. Jeng, “A Generalization of Prandtl’s and Spencer’s Solutions on Axisymmetric Viscous Flow,” Arch. Appl.Mech. 81 (4), 437–449 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. E. Aleksandrov and R. V. Goldstein, “Generalization of the Prandtl Solution to the Case of Axisymmetric Deformation of Materials Obeying the Double Shear Model,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 67–79 (2012) [Mech. Solids (Engl. Transl.) 47 (6), 654–664 (2012)].

    Google Scholar 

  16. R. Hill, TheMathematical Theory of Plasticity (Oxford Univ. Press, Oxford, 1950; Gostekhizdat,Moscow, 1956).

    Google Scholar 

  17. L.M. Kachanov, The Theory of Creep (Fizmatgiz, Moscow, 1960; Nat. Lending Lib., 1967).

    Google Scholar 

  18. S. E. Aleksandrov, “Velocity Field near the Surface of Discontinuity in an Arbitrary Flow of an Ideal Rigid- PlasticMaterial,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 5, 116–122 (1995) [Mech. Solids (Engl. Transl.)].

    Google Scholar 

  19. S. E. Aleksandrov and O. Richmond, “Singular Plastic Flow Fields near Surfaces of Maximum Friction Stress,” Int. J. Nonlin.Mech. 36 (1), 1–11 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Aleksandrov.

Additional information

Original Russian Text © S.E. Aleksandrov, E.A. Lyamina, N.M. Tuan, 2016, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2016, No. 2, pp. 64–75.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, S.E., Lyamina, E.A. & Tuan, N.M. Compression of an axisymmetric layer on a rigid mandrel in creep. Mech. Solids 51, 188–196 (2016). https://doi.org/10.3103/S0025654416020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654416020060

Keywords

Navigation