Skip to main content
Log in

Metal behavior near theoretical ultimate strength in experiments with femtosecond laser pulses

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

An interferometric method is used in the picosecond range to study the evolution of shock-compression waves generated in metallic film specimens by a powerful femtosecond laser. Shock waves with compression stress behind the elastic precursor front up to 27.5 GPa and 12.6 GPa, respectively, were registered in the case of submicron propagation length in iron and aluminum. The obtained values of the shear and bulk strength are comparable with computed values of the theoretical ultimate shear and tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., “Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 92(8), 568–573 (2010) [JETP Lett. (Engl. Transl.) 92 (8), 516–520 (2010)].

    Google Scholar 

  2. V. H. Whitley, S. D. MaGrane, D. E. Eakins, et al., “The Elastic-Plastic Response of Aluminum Films to Ultrafast Laser-Generated Shocks,” Appl. Phys. 109, 013505 (2011).

    Article  Google Scholar 

  3. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, et al., “Invariance of the Dissipative Action at Ultrahigh Strain Rates above the Strong Shock Threshold,” Phys. Rev. Lett. 107, 144302 (2011).

    Article  ADS  Google Scholar 

  4. S. I. Ashitkov, M. B. Agranat, G. I. Kanel, and V. E. Fortov, “Approaching the Ultimate Shear and Tensile Strength of Aluminum in Experiments with Femtosecond Pulse Laser,” in 17th Topical Conference on Shock Compression of Condensed Matter, Chicago, USA, June 26–July 1, 2011, Vol. 1426 (AIP Conf. Proc., 2012), pp. 1082–1084.

    Google Scholar 

  5. S. I. Ashitkov, P. S. Komarov, M. B. Agranat, et al., “Achievement of Ultimate Values of the Bulk and Shear Strengths of Iron Irradiated by Femtosecond Laser Pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 98(7), 439–444 (2013) [JETP Lett. (Engl. Transl.) 98 (7), 384–388 (2013)].

    Google Scholar 

  6. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, “Atomistic Simulations of Shock-Induced Transformations and Their Orientation Dependence in BCC Fe Single Crystals,” Phys. Rev. B 72, 064120 (2005).

    Article  ADS  Google Scholar 

  7. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ultrashort Shock Waves in Nickel Induced by Femtosecond Laser Pulses,” Phys. Rev. B 87, 054109 (2013).

    Article  ADS  Google Scholar 

  8. J. C. Crowhurst, B.W. Reed, M. R. Armstrong, et al., “The α→ɛ Phase Transition in Iron at Strain rates up to ∼ 109 s−1,” J. Appl. Phys. 115, 113506 (2014).

    Article  ADS  Google Scholar 

  9. V. P. Skripov, Metastable Fluid (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  10. M. Jahnátek, J. Hafner, and M. Krajčí, “Shear Deformation, Ideal Strength, and Staking Fault Formation of FCC Metals: A Density Functional Study of Al and Cu,” Phys. Rev. B 79, 224103 (2009).

    Article  ADS  Google Scholar 

  11. D. M. Clutterbuck, C. R. Krenn, M. L. Cohen, and J. W. Morris Jr., “Phonon Instabilities and the Ideal Strength of Aluminum,” Phys. Rev. Lett. 91, 135501 (2003).

    Article  ADS  Google Scholar 

  12. G. Kimminau, P. Erhart, E. M. Bringa, et al., “Phonon Instabilities in Uniaxially Compressed FCC Metals as Seen in Molecular Dynamics Simulations,” Phys. Rev. B 81, 092102 (2010).

    Article  ADS  Google Scholar 

  13. C. A. Bolme, S. D. MaGrane, D. S. Moore, and D. J. Funk, “Single Shot Measurements of Laser Driven Shock Wave Using Ultrafast Dynamic Ellipsometry,” J. Appl. Phys. 102, 033513 (2007).

    Article  ADS  Google Scholar 

  14. D. S. Moore, K. T. Gahagan, J.H. Reho, et al., “Ultrafast Nonlinear Optical Method for Generation of Planar Shocks,” Appl. Phys. Lett. 78, 40 (2001).

    Article  ADS  Google Scholar 

  15. K. T. Gahagan, D. S. Moore, D. J. Funk, et al., “Ultrafast Interferometric Microscopy for Laser-Driven Shock Wave Characterization,” J. Appl. Phys. 92, 3679 (2002).

    Article  ADS  Google Scholar 

  16. S. I. Anisimov, N. A. Inogamov, Y. V. Petrov, et al., “Thresholds for Front-Side Ablation and Rear-Side Spallation of Metal Foil Irradiated by Femtosecond Laser Pulse,” Appl. Phys. A 92, 797 (2008).

    Article  ADS  Google Scholar 

  17. V. V. Temnov, K. Sokolovski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast Imaging Interferometry at Femtosecond-Laser-Excited Surfaces,” J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  18. S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, et al., “Deformation Dynamics and Spallation Strength of Aluminium under a Single-Pulse Action of a Femtosecond Laser,” Kvant. Elektron. 43(3), 242–245 (2013) [Quantum Electron. (Engl. Transl.) 43 (3), 242–245 (2013)].

    Article  ADS  Google Scholar 

  19. L.M. Barker and R. E. Hollenbach, “Shock Wave Study of Phase Transition in Iron,” J. Appl. Phys. 45, 4872 (1974).

    Article  ADS  Google Scholar 

  20. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  21. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Book  Google Scholar 

  22. R. F. Smith, J. H. Eggert, R. E. Rudd, et al., “High Strain-Rate Plastic Flow in Al and Fe,” J. Appl. Phys. 110, 123515 (2011).

    Article  ADS  Google Scholar 

  23. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, “Submicrosecond Strength of Materials,” Mech. Solids 40(4), 69 (2005).

    Google Scholar 

  24. G. I. Kanel, S. V. Razorenov, G. V. Garkushin, et al., “Deformation Resistance and Fracture of Iron over a Wide Strain Rate Range,” Fiz. Tverd. Tela 56(8), 1518–1522 (2014) [Phys. Solid State (Engl. Transl.) 56 (8), 1569–1573 (2014)].

    Google Scholar 

  25. G. I. Kanel, “Dynamic Strength of Materials,” Fatig. Fract. Engng Mater. Struct. 22(11), 1011 (1999).

    Article  Google Scholar 

  26. P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailob, and A. V. Yanilkin, “Influence of Plastic Deformation on Fracture of an Aluminum Single Crystal under Shock-Wave Loading,” Fiz. Tverd. Tela 52(8), 1508–1512 (2010) [Phys. Solid State (Engl. Transl.) 52 (8), 1619–1624 (2010)].

    Google Scholar 

  27. V. V. Zhakhovskii, N. A. Inogatov, Yu. V. Petrov, et al., “Molecular Dynamics Simulation of Femtosecond Ablation and Spallation with Different Interatomic Potentials,” Appl. Surf. Sci. 255, 9592 (2009).

    Article  ADS  Google Scholar 

  28. D. M. Clattenbuck, D. C. Chrzan, and J.W. Morris, “The Ideal Strength of Iron in Tension and Shear,” Acta Mater. 51, 2271 (2003).

    Article  Google Scholar 

  29. S. Ogata, J. Li, N. Hirosaki, et al., “Ideal Shear Strain of Metals and Ceramics,” Phys. Rev. B 70, 104104 (2004).

    Article  ADS  Google Scholar 

  30. M. Cerny and J. Pokluda, “Influence of Superimposed Biaxial Stress on the Tensile Strength of Perfect Crystals from first Principles,” Phys. Rev. B 76, 024115 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Agranat.

Additional information

Original Russian Text © M.B. Agranat, S.I. Ashitkov, P.S. Komarov, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 6, pp. 50–57.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agranat, M.B., Ashitkov, S.I. & Komarov, P.S. Metal behavior near theoretical ultimate strength in experiments with femtosecond laser pulses. Mech. Solids 49, 643–648 (2014). https://doi.org/10.3103/S0025654414060053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654414060053

Keywords

Navigation