Skip to main content

Stability of strain control systems of nano- and microdisplacement piezotransducers

Abstract

The transfer functions of multilayer nano- and microdisplacement piezotransducers are obtained under the conditions of longitudinal and transverse piezo-optic effects. The absolute stability conditions are derived for the strain control systems of multilayer nano- and microdisplacement piezotransducers. Some compensating devices ensuring the stability of strain control systems of multilayer piezotransducers are chosen.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. L. Mironov, Foundations of Scanning Probe Microscopy (Tekhnosfera, Moscow, 2004) [in Russian].

    Google Scholar 

  2. 2.

    V. A. Akopiayn, A. E. Panich, A. N. Soloviev, et al., “Several Physico-Mechanical Problems of Piezoelectric Actuators and the Fields of Their Application,” Nano-Mikrosist. Tekhn., No. 10, 35–40 (2006).

    Google Scholar 

  3. 3.

    S. M. Afonin, “Parametric Structural Diagram of a Piezoelectric Converter,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 101–107 (2002) [Mech. Solids (Engl. Transl.) 37 (6), 85–91 (2002)].

    Google Scholar 

  4. 4.

    S.M. Afonin, “Absolute Stability Conditions for a System Controlling the Deformation of an Electromagnetoelastic Transducer,” Dokl. Ross. Akad. Nauk 411(5), 603–608 (2006) [Dokl. Math. (Engl. Transl.) 74 (3), 943–948 (2006)].

    MathSciNet  Google Scholar 

  5. 5.

    S. M. Afonin, “Static and Dynamic Characteristics of a Multi-Layer Electroelastic Solid,” Izv. Akad. Nauk. Mekh. Tverd. Tela,No. 6, 149–168 (2009) [Mech. Solids (Engl. Transl.) 44 (6), 935–950 (2009)].

    Google Scholar 

  6. 6.

    W. Mason (Editor) Physical Acoustics, Vol. 1, Part A: Methods and Devices of Ultrasonic Studies (Mir, Moscow, 1966) [in Russian].

    Google Scholar 

  7. 7.

    B. N. Naumov, Theory of Nonlinear Automatic Systems. Frequency Methods (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  8. 8.

    A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with Nonunique Equilibrium (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  9. 9.

    A. Kh. Gelig, G. A. Leonov, and A. L. Fradkov (Editors), Nonlinear Systems. Frequency and Matrix Methods (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  10. 10.

    V. A. Besekerskii and E. P. Popov, Theory of Automatic Control Systems (Professiya, Moscow, 2004) [in Russian].

    Google Scholar 

  11. 11.

    A. Preisach, “Über die Magnetische Nachwirkung,” Zeitschrift für Physic. Berlin: Verlag von Julius Springer 94(5, 6), 277–302 (1935).

    ADS  Article  Google Scholar 

  12. 12.

    A. V. Turik, “Theory of Polarization and Hysteresis of Ferroelectrics,” Fiz. Tverd. Tela 5(4), 1213–1215 (1963) [Sov. Phys. Solid State (Engl. Transl.) 5 (4), 885–886 (1963)].

    Google Scholar 

  13. 13.

    A. V. Turik and L. A. Reznichenko, “Ferroelectric Ceramics in Strong Electric Fields: Electromechanical Hysteresis, Piezoeffect, and Electrostriction. A Survey,” in Phase Transitions, Ordered States and New Materials (Rostov Univ., Rostov-on-Don, 2008), No. 1, pp. 1–4 [in Russian].

    Google Scholar 

  14. 14.

    C. S. Lynch, “The Effect of Uniaxial Stress on the Electro-Mechanical Response of 8/65/35 PLZT,” Acta Materialia 44(10), 4137–4148 (1996).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Afonin.

Additional information

Original Russian Text © S.M. Afonin, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 2, pp. 98–111.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.M. Stability of strain control systems of nano- and microdisplacement piezotransducers. Mech. Solids 49, 196–207 (2014). https://doi.org/10.3103/S0025654414020095

Download citation

Keywords

  • multilayer nano- and microdisplacement piezotransducers
  • strain control system
  • absolute stability conditions
  • compensating devices