Skip to main content
Log in

Modeling of phase and structure transformations occurring in shape memory alloys under nonmonotonically varying stresses

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A model of deformation of shape memory alloys (SMA) under nonmonotone loading is proposed. The model takes into account the fact that there is no strain hardening in the process of accumulation of the first phase transformation strains and describes both the usual hardening and the cross-hardening observed in martensite inelasticity experiments. Several examples illustrate the process of solving the model one-dimensional deformation problem with a given law of variation of the stress and the phase composition parameter and the problem on the direct transformation that occurs when cooling an SMA rod subjected to a constant bending moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Movchan and S. A. Kazarina, “Shape Memory Materials as an Object of Deformable Solid Mechanics: Experimental Studies, Constitutive Relations, Solution of Boundary-Value Problems,” Fiz. Mesomekh., 15(1), 105–116 (2012).

    Google Scholar 

  2. E.Z. Vitaikin, D.F. Litvin, S. Yu. Makushev, and V. A. Udovenko, “Structure Mechanism of Shape Memory Effect in Alloys,” Dokl. Akad. Nauk SSSR 229(3), 597–600 (1976).

    Google Scholar 

  3. A. A. Movchan, S. A. Kazarina, and Tant Zin Aung, “Analog of Theory of Plasticity for Describing Deformations of Shape Memory Alloys under Phase and Structure Transformations,” Deform. Razrush. Mat., No. 9, 2–7 (2009).

    Google Scholar 

  4. M. Achenbach, “A Model for an Alloy with Shape Memory,” Int. J. Plasticity 5(4), 371–395 (1989).

    Article  Google Scholar 

  5. K. Tanaka, “A Phenomenological Description of Thermomechanical Behavior of Shape Memory Alloys,” J. Pressure Vessel Technol. Trans. ASME 112(2), 158–163 (1990).

    Article  Google Scholar 

  6. C. Liang and C. A. Rogers, “One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials,” J. Intell. Mater. Syst. Struct. 1(2), 207–234 (1990).

    Article  Google Scholar 

  7. E. J. Graesser and E. A. Cozzarelli, “A Proposed Three-Dimensional Constitutive Model for Shape Memory Alloy,” J. Intell. Mater. Syst. Struct. 5(1), 78–89 (1994).

    Article  Google Scholar 

  8. A. A. Movchan, “Micromechanical Description of the Deformation due to Martensite Transformations in Shape-Memory Alloys,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 197–205 (1995) [Mech. Solids (Engl. Transl.) 30 (1), 186–192 (1995)].

    Google Scholar 

  9. A. A. Movchan, “Selecting a Phase-Diagram Approximation and a Model of the Disappearance of Martensite Crystals for Shape Memory Alloys,” Zh. Prikl. Mekh. Tekhn. Fiz. 36(2), 173–181 (1995) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 36 (2), 300–307 (1995)].

    Google Scholar 

  10. L. S. Brinson and M. S. Huang, “Simplification and Comparisons of Shape Memory Alloys Constitutive Models,” J. Intell. Mater. Syst. Struct. 7(1), 108–114 (1996).

    Article  Google Scholar 

  11. J.G. Boyd and D. C. Lagoudas, “A Thermodynamic Constitutive Model for Shape Memory Materials. Part 1: The Monolithic Shape Memory Alloy,” Int. J. Plasticity 12(6), 805–842 (1996).

    Article  MATH  Google Scholar 

  12. J. Lubliner and F. Auricchio, “Generalize Plasticity and Shape-Memory Alloys,” Int. J. Solids Struct. 33(7), 991–1003 (1996).

    Article  MATH  Google Scholar 

  13. W. Huang, “Yield Surface of Shape Memory Alloys and Their Applications,” Acta Meterialia 47(9), 2769–2776 (1999).

    Article  Google Scholar 

  14. A. E. Volkov and V. Yu. Sakharov, “Thermomechanical Macromodel of Shape Memory Alloys,” Izv. Ross. Akad. Nauk. Ser. Fiz. 67(6), 845–851 (2003) [Bull. Russ. Acad. Sci. Phys. (Engl. Transl.)].

    Google Scholar 

  15. C. Lexcellent, M. L. Boubaker, C. Bouvet, and S. Calloch, “About Modeling the Shape Memory Alloy Behavior Based on the Phase Transformation Surface Identification under Proportional Loading and Anisothermal Conditions,” Int. J. Solids Struct. 43(3–4), 613–626 (2006).

    Article  MATH  Google Scholar 

  16. J. Arghavani, F. Auricchio, R. Naghdabadi, et al., “A 3-D Phenomenological Constitutive Model for Shape Memory Alloys under Multiaxial Loading,” Int. J. Plasticity 26, 976–991 (2010).

    Article  MATH  Google Scholar 

  17. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, “Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys in Phase and Structure Transformations,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 118–130 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 406–416 (2010)].

    Google Scholar 

  18. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, “Effect of Structural Transformation and Deformation Nonlinearity on the Stability of a Shape Memory Alloy Rod,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 137–147 (2010) [Mech. Solids (Engl. Transl.) 45 (6), 876–884 (2010)].

    Google Scholar 

  19. A. A. Movchan, L. G. Sil’chenko, and T. L. Sil’chenko, “Taking Account of the Martensite Inelasticity in the Reverse Phase Transformation in Shape Memory Alloys,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 44–56 (2011) [Mech. Solids (Engl. Transl.) 46 (2), 194–203 (2010)].

    Google Scholar 

  20. V. A. Likhachev (Editor), Materials with Shape Memory Effect. A Handbook (Izd-vo NIIKh SPbGU, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  21. A. A. Movchan, “Consideration of the Elastic Modulus Variability and the Effect of Stresses on the Phase Composition in Shape Memory Alloys,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 79–90 (1998) [Mech. Solids (Engl. Transl.) 33 (1), 64–72 (1998)].

    Google Scholar 

  22. A. A. Movchan and I. A. Movchan, “One-Dimensional Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys under Direct and Inverse Thermoelastic Transformations,” Mekh. Komp. Mater. Konstr. 13(3), 297–322 (2007) [J. Comp. Mech. Design (Engl. Transl.)].

    MathSciNet  Google Scholar 

  23. A. A. Movchan, S. A. Kazarina, I. V. Mishustin, and I. A. Movchan, “Thermodynamical Justification of the Model of Nonlinear Deformation of Shape Memory Alloys in Phase and Structure Transformations,” Deform. Razrush. Mater., No. 8, 2–9 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mishustin.

Additional information

Original Russian Text © I.V. Mishustin, A.A. Movchan, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 1, pp. 37–53.

About this article

Cite this article

Mishustin, I.V., Movchan, A.A. Modeling of phase and structure transformations occurring in shape memory alloys under nonmonotonically varying stresses. Mech. Solids 49, 27–39 (2014). https://doi.org/10.3103/S002565441401004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565441401004X

Keywords

Navigation