Abstract
The motion of a double mathematical pendulum under the action of the gravity force and a vibration force whose frequency substantially exceeds the system natural frequencies is considered. An oblique vibration stabilizing the pendulum in an arbitrarily given position is sought. The domain of existence of the pendulum equilibrium points and the vibration parameters corresponding to a given equilibrium of the pendulumare obtained analytically. In the domain of existence of equilibrium points, the subdomain of their stability is distinguished.
Similar content being viewed by others
References
P. O. Bulanchuk and A.G. Petrov, “Vibrational Energy and Control of Pendulum Systems,” Prikl. Mat. Mekh. 76(4), 550–562 (2012) [J. Appl. Math. Mech. (Engl. Transl.) 76 (4), 396–404 (2012)].
A. Stephenson, “On Induced Stability,” Phil. Mag. Ser. 7 17, 765–766 (1909).
O. V. Kholostova, “On Stability of Relative Equilibria of a Double Pendulum with Vibrating Suspension Point,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 18–30 (2011) [Mech. Solids (Engl. Transl.) 46 (4), 508–518 (2011)].
E. A. Vishenkova and O. V. Kholostova, “To Dynamics of a Double Pendulum with a Horizontally Vibrating Point of Suspension,” Vestnik Udmurt.Univ. Mat. Mekh. Komp. Nauki., No. 2, 114–129 (2012).
T. G. Strizhak, Averaging Methods in Problems of Mechanics (Vishcha Shkola, Kiev-Donetsk, 1982) [in Russian].
P. O. Bulanchuk and A. G. Petrov, “Control of the Equilibrium Point of Simple and Double Mathematical Pendulums with Oblique Vibration,” Dokl. Ross. Akad. Nauk 442(4), 474–378 (2012) [Dokl. Phys. (Engl. Transl.) 57 (2), 73–77 (2012)].
A. G. Petrov, “Vibratory Energy of a Conservative Mechanical System,” Dokl. Ross. Akad. Nauk 431(6), 762–765 (2010) [Dokl. Phys. (Engl. Transl.) 55 (4), 203–206 (2010)].
N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian].
V. Ph. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Vibrations (Nauka, Moscow, 1988) [in Russian].
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © P.O. Bulanchuk, A.G. Petrov, 2013, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2013, No. 4, pp. 31–39.
About this article
Cite this article
Bulanchuk, P.O., Petrov, A.G. Suspension point vibration parameters for a given equilibrium of a double mathematical pendulum. Mech. Solids 48, 380–387 (2013). https://doi.org/10.3103/S0025654413040043
Received:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S0025654413040043