Skip to main content
Log in

Suspension point vibration parameters for a given equilibrium of a double mathematical pendulum

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The motion of a double mathematical pendulum under the action of the gravity force and a vibration force whose frequency substantially exceeds the system natural frequencies is considered. An oblique vibration stabilizing the pendulum in an arbitrarily given position is sought. The domain of existence of the pendulum equilibrium points and the vibration parameters corresponding to a given equilibrium of the pendulumare obtained analytically. In the domain of existence of equilibrium points, the subdomain of their stability is distinguished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. Bulanchuk and A.G. Petrov, “Vibrational Energy and Control of Pendulum Systems,” Prikl. Mat. Mekh. 76(4), 550–562 (2012) [J. Appl. Math. Mech. (Engl. Transl.) 76 (4), 396–404 (2012)].

    MathSciNet  Google Scholar 

  2. A. Stephenson, “On Induced Stability,” Phil. Mag. Ser. 7 17, 765–766 (1909).

    Article  MATH  Google Scholar 

  3. O. V. Kholostova, “On Stability of Relative Equilibria of a Double Pendulum with Vibrating Suspension Point,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 18–30 (2011) [Mech. Solids (Engl. Transl.) 46 (4), 508–518 (2011)].

    Google Scholar 

  4. E. A. Vishenkova and O. V. Kholostova, “To Dynamics of a Double Pendulum with a Horizontally Vibrating Point of Suspension,” Vestnik Udmurt.Univ. Mat. Mekh. Komp. Nauki., No. 2, 114–129 (2012).

    Google Scholar 

  5. T. G. Strizhak, Averaging Methods in Problems of Mechanics (Vishcha Shkola, Kiev-Donetsk, 1982) [in Russian].

    Google Scholar 

  6. P. O. Bulanchuk and A. G. Petrov, “Control of the Equilibrium Point of Simple and Double Mathematical Pendulums with Oblique Vibration,” Dokl. Ross. Akad. Nauk 442(4), 474–378 (2012) [Dokl. Phys. (Engl. Transl.) 57 (2), 73–77 (2012)].

    MathSciNet  Google Scholar 

  7. A. G. Petrov, “Vibratory Energy of a Conservative Mechanical System,” Dokl. Ross. Akad. Nauk 431(6), 762–765 (2010) [Dokl. Phys. (Engl. Transl.) 55 (4), 203–206 (2010)].

    Google Scholar 

  8. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian].

    MATH  Google Scholar 

  9. V. Ph. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Vibrations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Bulanchuk.

Additional information

Original Russian Text © P.O. Bulanchuk, A.G. Petrov, 2013, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2013, No. 4, pp. 31–39.

About this article

Cite this article

Bulanchuk, P.O., Petrov, A.G. Suspension point vibration parameters for a given equilibrium of a double mathematical pendulum. Mech. Solids 48, 380–387 (2013). https://doi.org/10.3103/S0025654413040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654413040043

Keywords

Navigation