Skip to main content
Log in

Controlled pendulum on a movable base

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A plane motion of a multilink pendulum hinged to a movable base (a wheel or a carriage) is considered. The control torque applied between the base and the first link of the pendulum is independent of the base position and velocity and is bounded in absolute value. The coordinate determining the base position is cyclic. The mathematical model of the system permits one to single out the equations describing the pendulum motion alone, which differ from the well-known equations of motion of a pendulum with a fixed suspension point both in the structure and in the parameters occurring in these equations. The phase portrait of motions of a control-free one-link pendulum suspended on a wheel or a carriage is obtained. A feedback control ensuring global stabilization of the unstable upper equilibrium of the pendulum is constructed. Time-optimal control synthesis is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. G. Martynenko and A. M. Formal’skii, “The Theory of the Control of a Monocycle,” Prikl. Mat. Mekh. 69(4), 569–583 (2005) [J. Appl. Math. Mech. (Engl. Transl.) 69 (4), 516–528 (2005)].

    MathSciNet  MATH  Google Scholar 

  2. Yu.G. Martynenko and A.M. Formal’skii, “Problems of Control ofUnstable Systems,” Uspekhi Mekh. 3(2), 71–135 (2005).

    Google Scholar 

  3. Yu. G. Martynenko and A. M. Formal’skii, “A Control of the Longitudinal Motion of a Single-Wheel Robot on an Uneven Surface,” Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 4, 165–173 (2005) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 44 (4), 662–670 (2005)].

    Google Scholar 

  4. F. L. Chernousko, L. D. Akulenko, and B. N. Sokolov, Control of Oscillations (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  5. Y. Aoustin and A. M. Formal’sky, “Simple Anti-Swing Feedback Control for a Gantry Crane,” Robotica 21, 655–666 (2003).

    Article  Google Scholar 

  6. N. N. Bolotnik, I. M. Zeidis, K. Zimmermann, and S. F. Yatsun, “Dynamics of Controlled Motion of Vibration-Driven Systems,” Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 5, 157–167 (2006) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 45 (5), 831–840 (2006)].

    Google Scholar 

  7. A. M. Formal’skii, Displacement of Anthropomorphic Mechanisms (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  8. Khaled Gamal Eltohamy and Chen-Yuan Kuo, “Nonlinear Generalized Equations of Motion for Multi-Link Inverted Pendulum Systems,” Int. J. Syst. Sci. 30(5), 505–513 (1999).

    Article  MATH  Google Scholar 

  9. S. Lam and E. J. Davison, “The Real Stabilizability Radius of the Multi-Link Inverted Pendulum,” in Proc. 2006 American Control Conf.Minneapolis, Minnesota, USA (2006), pp. 1814–1819.

    Google Scholar 

  10. T. G. Strizhak, Methods for Studying ‘Pendulum’-Type Dynamical Systems (Nauka, Alma-Ata, 1981) [in Russian].

    Google Scholar 

  11. A.M. Formal’skii, “Stabilization of an Inverted Pendulumwith a Fixed or Movable Suspension Point,” Dokl. Ross. Akad. Nauk 406(2), 175–179 (2006) [Dokl. Math. (Engl. Transl.) 73 (1), 152–156 (2006)].

    MathSciNet  Google Scholar 

  12. A.M. Formal’skii, “An Inverted Pendulum on a Fixed and a Moving Base,” Prikl. Mat. Mekh. 70(1), 62–71 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (1), 56–64 (2006)].

    MathSciNet  MATH  Google Scholar 

  13. A.M. Formal’skii, “Stabilization of Unstable Mechanical Systems,” J. Optimiz. Theory Appl. 144(2), 227–253 (2010).

    Article  MathSciNet  Google Scholar 

  14. N. G. Chetaev, Stability of Motion (Izdat. AN SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  15. B. A. Smol’nikov, Problems ofMechanics and Robots Optimization (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  16. A.M. Formal’skii, Controllability and Stability of Systems with Restricted Resources (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  17. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow, 1972).

    MATH  Google Scholar 

  18. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, TheMathematical Theory of Optimal Processes (Nauka, Moscow, 1983; Gordon & Breach Sci. Publ., New York, 1986).

    Google Scholar 

  19. S. A. Reshmin and F. L. Chernous’ko, “Time-Optimal Control of an Inverted Pendulum in the Feedback Form,” Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 3, 51–62 (2006) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 45 (3), 383–394 (2006)].

    Google Scholar 

  20. S. A. Reshmin and F. L. Chernous’ko, “A Time-Optimal Control Synthesis for a Nonlinear Pendulum,” Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 1, 13–22 (2007) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 46 (1), 9–18 (2007)].

    Google Scholar 

  21. S. A. Reshmin and F. L. Chernousko, “Optimal in the Speed of Response Synthesis of Control in Problems of Swaying and Damping of Nonlinear Pendulum Oscillations,” in Proc. 9th Chetaev Conf. “Analytical Mechanics, Stability, and Control of Motion”, Vol. 3 (Irkutsk, 2007), pp. 179–196 [in Russian].

    Google Scholar 

  22. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1 (Gostekhizdat, Moscow-Leningrad, 1951) [in Russian].

    Google Scholar 

  23. F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  24. Ya. G. Panovko and I. I. Gubanova, Stability and Oscillations of Elastic Systems (Consultant Bureau, New York 1965; Nauka,Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Formal’skii.

Additional information

Original Russian Text © Yu.G. Matynenko, A.M. Formal’skii, 2013, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2013, No. 1, pp. 9–23.

About this article

Cite this article

Martynenko, Y.G., Formal’skii, A.M. Controlled pendulum on a movable base. Mech. Solids 48, 6–18 (2013). https://doi.org/10.3103/S0025654413010020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654413010020

Keywords

Navigation