Skip to main content
Log in

Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped

Mechanics of Solids Aims and scope Submit manuscript

Cite this article


A procedure for determining nonstationary vibrations of a discretely accreted thermoelastic body in the approximation of small deformations and thermal flows is developed. A closed-form solution is constructed for a growing parallelepiped under “smoothly rigid” heat-insulated fixation conditions for the stationary faces and the growing load-free face. The temperature field on the growing face is analyzed numerically for various accretion scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others


  1. N. Kh. Arutyunyan, A. V. Manzhirov, and V. E. Naumov, Contact Problems of Mechanics of Growing Bodies (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  2. S. A. Lychev, T. N. Lycheva, and A. V. Manzhirov, “Unsteady Vibration of a Growing Circular Plate,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 199–208 (2011) [Mech. Solids (Engl. Transl.) 46 (2), 325–333 (2011)].

  3. S. I. Kuznetsov, A. V. Manzhirov, and I. Fedotov, “Heat Conduction Problem for a Growing Ball,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 6, 139–148 (2011) [Mech. Solids (Engl. Transl.) 46 (6), 929–936 (2011)].

  4. A. V. Manzhirov and S. A. Lychev, “The Mathematical Theory of Growing Solids: Finite Deformations,” Dokl. Ross. Akad. Nauk 443(4), 438–441 (2012) [Dokl. Phys. (Engl. Transl.) 57 (4), 160–163 (2012)]

    MathSciNet  Google Scholar 

  5. S. A. Lychev and Yu. E. Senitskii, “Nonsymmetric Finite Integral Transformations and Their Applications to Viscoelasticity Problems,” Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser., Special Issue, 16–38 (2002).

  6. S. A. Lychev, “CoupledDynamic ThermoviscoelasticityProblem,” Izv. Akad.Nauk.Mekh. Tverd. Tela, No. 5, 95–113 (2008) [Mech. Solids (Engl. Transl.) 43 (5), 769–784 (2008)].

  7. W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1975).

    Google Scholar 

  8. S. A. Lychev, A. V. Manzhirov, and S. V. Joubert, “Closed Solutions of Boundary-Value Problems of Coupled Thermoelasticity,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 4, 138–154 (2010) [Mech. Solids (Engl. TRansl.) 45 (4), 610–623 (2010)].

  9. P. A. Zhilin and T. P. Il’icheva, “Spectra and Oscillation Mode Shapes of a Rectangular Parallelepiped Obtained Using Three-Dimensional Theory of Elasticity and Theory of Plates,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 94–103 (1980) [Mech. Solids (Engl. Transl.)].

  10. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. I. C. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space (Nauka, Moscow, 1965; AMS, 1969).

    Google Scholar 

  12. Online Materials Information Resource — MatWeb, URL:

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. L. Levitin.

Additional information

Original Russian Text © A.L. Levitin, S.A. Lychev, A.V. Manzhirov, M.Yu. Shatalov, 2012, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2012, No. 6, pp. 95–109.

About this article

Cite this article

Levitin, A.L., Lychev, S.A., Manzhirov, A.V. et al. Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped. Mech. Solids 47, 677–689 (2012).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: