Skip to main content
Log in

Long-term strength of metals in complex stress state (a survey)

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

An analytic survey of experimental data and theoretical approaches characterizing the long-term strength of metals in complex stress state is given. In Sections 2 and 3, the results of plane stress tests (with opposite and equal signs of the nonzero principal stresses, respectively) are analyzed. In Section 4, the results of inhomogeneous stress tests (thick-walled tubes under the action of internal pressures and tensile forces) are considered. All known experimental data (35 test series) are analyzed by a criterion approach. An equivalent stress σ e is introduced as a characteristic of the stress state. Attention is mainly paid to the dependence of σ e on the principal stresses. Statistical methods are used to obtain an expression for σ e, which can be used to study various types of the complex stress state. It is shown that for the long-term strength criterion one can use the power or power-fractional dependence of the time to rupture on the equivalent stress. The methods proposed to describe the test results give a good correspondence between the experimental and theoretical values of the time to rupture. In Section 5, the possibilities of complicating the expressions for σ e by using additional material constants are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Rabotnov, Creep of Construction Elements (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. A. E. Johnson, “Complex-Stress Creep of Metals,” Metallurg. Rev. 5(20), 447–506 (1960) [in Mechanics, Collection of translations of foreign papers, No. 4 (1962), pp. 91–146].

    Google Scholar 

  3. A. M. Lokoshchenko and S. A. Shesterikov, “Creep,” in Results of Science and Technics, Ser. Mechanics of Deformable Solids (VINITI, Moscow, 1965), pp. 177–227 [in Russian].

    Google Scholar 

  4. S. A. Shesterikov and A. M. Lokoshchenko, “Creep and Long-Term Strength of Metals,” in Results of Science and Engineering, Ser. Mechanics of Deformable Solids, Vol. 13 (VINITI, Moscow, 1980), pp. 3–104 [in Russian].

    Google Scholar 

  5. R. J. Browne, D. Lonsdale, and P. E. J. Flewitt, “Multiaxial Stress Rupture Testing and Compendium of Data for Creep Resisting Steels,” Trans. ASME. J. Engng Mater. Tech., 104(4), 291–296 (1982) [Trudy Amer. Obshch. Inzh. Mekh. (Russ. Transl.), 104 (4), 56–65 (1982)].

    Article  Google Scholar 

  6. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in Complex Stress State (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  7. A. A. Lebedev, B. I. Kovalchuk, F. F. Giginyak, and V. P. Lamashevskii,Mechanical Properties of Structural Materials in Complex Stress State, Ed. by A. A. Lebedev (Izdat. Dom “In Yure”, Kiev, 2003) [in Russian].

    Google Scholar 

  8. A. M. Lokoshchenko, Modeling of Creep Process and Long-Term Strength of Metals (MGIU, Moscow, 2007) [in Russian].

    Google Scholar 

  9. A. A. Lebedev, “The Theory of Equivalent Stresses as a Problem of Mechanics of Materials,” Probl. Prochn., No. 2, 25–46 (1996) [Strength ofMaterials (Engl. Transl.) 28 (2), 94–108 (1996)].

  10. A. E. Johnson, J. Henderson, and V. D. Mathur, “Combined Stress Creep Fracture of a Commercial Copper at 250 deg. cen. Pt. 1,” The Engineer 202(5248), 261–265 (1956).

    Google Scholar 

  11. A. E. Johnson, J. Henderson, and V. D. Mathur, “Complex Stress Creep Fracture of an Aluminium Alloy,” Aircraft Engng 32(376), 161–170 (1960).

    Google Scholar 

  12. J. Henderson and J. D. Snedden, “Prediction on Shear-Creep Fracture in Aluminium Alloy Conponents,” Aircraft Engng 100(6), 163–171 (1972).

    Google Scholar 

  13. J. Henderson and F. R. Ferguson, “Determination of the Multiaxial Stress Creep Fracture Criterion Using a Modified Tensile Creep Unit,” Met. Technol. 4(6), 296–300 (1977).

    Google Scholar 

  14. B. V. Zver’kov, “Long-Term Strength of Tubes under Complex Loads,” Teploenerget., No. 3, 51–54 (1959).

  15. V. P. Sdobyrev, “Long-Term Strength of Alloy EI437B in Combined Stress State,” Izv. Akad. Nauk. SSSR. OTN, No. 4, 92–97 (1958).

  16. V. P. Sdobyrev, “Long-Term Strength Criterion for Several High-Temperature Alloys in Combined Stress State,” Izv. Akad. Nauk. SSSR. OTN. Mekh. Mashinostr, No. 6, 93–99 (1959).

  17. V. P. Sdobyrev, “Creep and Long-Term Strength in Tension and Torsion,” Inzh. Zh. 3(2), 413–416 (1963).

    Google Scholar 

  18. I. I. Trunin, “Estimation of Long-Term Breaking Strength and Some Characteristics of Strain in Combined Stressed State,” Zh. Prikl. Mekh. Tekh. Fiz., 4(1), 110–114 (1963) [J. Appl. Mech. Tech. Phys. (Engl. Transl.)].

    Google Scholar 

  19. I. I. Trunin and G. A. Shaban, “Study of Long-Term Strength of Heat-Resistant Steel in Complex Stress State,” in Structure and Properties of New Heat-Resistant Materials, Book 105 (TsNIITMASh, Moscow, 1962), pp. 42–56 [in Russian].

    Google Scholar 

  20. O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, “Enegry Variant of Theory of Creep. 1. Basic Hypotheses and Their Experimental Verification,” Probl. Prochn., No. 11, 3–8 (1976) [Strength of Materials (Engl. Transl.) 8 (11), 1255–1260 (1976)].

  21. O. V. Sosnin, “Energy Version of the Theory of Creep and Long-Term (Creep) Strength. Creep and Rupture of Nonstrengthening Materials. I,” Probl. Prochn.,No. 5, 45–49 (1973) [Strength of Materials (Engl. Transl.) 5 (5), 564–568 (1973)].

  22. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials (Izd-vo Inst. Gidrodin. SO RAN, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  23. B. F. Dyson and D. McLean, “Creep of Nimonic 80A in Torsion and Tension,” Met. Sci. 11(2), 37–45 (1977).

    Google Scholar 

  24. A. M. Lokoshchenko, E. A. Myakotin, and S. A. Shesterikov, “Creep and Long-Term Strength of Steel Kh18N10T in Combined Stress State,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 87–94 (1979) [Mech. Solids (Engl. Transl.)].

  25. A. M. Lokoshchenko, “Stress-Rupture Strength of Metals in the Complex Stressed State,” Probl. Prochn., No. 8, 55–59 (1983) [Strength of Materials (Engl. Transl.) 15 (8), 1098–1103 (1983)].

  26. A. M. Lokoshchenko, “Criteria for Determining the Long-Term Strength under Conditions of Complex Loading,” Probl. Prochn., No. 9, 3–6 (1989) [Strength of Materials (Engl. Transl.) 21 (9), 1121–1124 (1989)].

  27. S. A. Shesterikov and M. A. Yumasheva, “Specification of Equation of State in Creep Theory,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 86–91 (1984) [Mech. Solids (Engl. Transl.)].

  28. S. A. Shesterikov and M. A. Yumasheva, “On the Nonlinear Creep Flow Potential,” in Creep in Structures. 4th IUTAM Symp., Cracow, Poland, 1990 (Springer, Berlin, 1991), pp. 615–620.

    Google Scholar 

  29. A.M. Lokoshchenko, V. V. Nazarov, D.O. Platonov, and S. A. Shesterikov, “Analysis of Long-Term Strength Criteria for Metals under Complex Stress State,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 139–149 (2003) [Mech. Solids (Engl. Transl.) 38 (2), 113–121 (2003)].

  30. A.M. Lokoshchenko, A. I. Martynenko, and D. O. Platonov, “Analysis of Long-Term Strength Criteria in Complex Stress State with Correction of Test Results Taken into Account,” in Problems of Dynamics and Strength in Gas Turbine Construction. Theses of Reports. 2nd Intern. Sci.-Techn. Conf., May 25–27, 2004, Kiev (IPP NANU, Kiev, 2004), pp. 119–121 [in Russian].

    Google Scholar 

  31. E. A. Myakotin, “Allowing for Strength Anisotropy in Estimating the Rupture Strength of Actual Tubes in a Plane Stress State,” Probl. Prochn., No. 5, 20–23 (1982) [Strength of Materials (Engl. Transl.) 14 (5), 589–593 (1982)].

  32. A. M. Lokoshchenko, “Determination of Anisotropy during a Study of Long-Term Strength under Conditions of a Plane Stress State,” Probl. Prochn., No. 9, 71–73 (1983) [Strength of Materials (Engl. Transl.) 15 (9), 1278–1281 (1983)].

  33. B. J. Cane, “Creep Damage Accumulation and Fracture under Multiaxial Stresses,” Advances in Fracture Research, Prepr. 5th Int. Conf. Fract. Cannes 1981. Oxford e.a. 3, 1285–1293 (1981).

    Google Scholar 

  34. P. A. Pavlov and N. N. Kurilovich, “Delayed Fracture of Heat-Resistant Steels with Nonsteady Loading,” Probl. Prochn., No. 2, 44–47 (1982) [Strength of Materials (Engl. Transl.) 14 (2), 188–191 (1982)].

  35. E. R. Golubovskii, “Rupture Strength and Fracture Criteria of Alloy EI698VD in a Complex Stress State,” Probl. Prochn., No. 8, 11–17 (1984) [Strength of Materials (Engl. Transl.) 16 (8), 1072–1081 (1984)].

  36. A. A. Lebedev, “Generalized Long-Term Strength Criterion,” in Thermal Strength of Materials and Structural Elements (Naukova Dumka, Kiev, 1965), pp. 69–76 [in Russian].

    Google Scholar 

  37. E. R. Golubovskii and A. P. Pod’yachev, “Evaluation of Stress-Rupture Strength with a Complex Stressed State for Nickel Alloys with a Polycrystalline and Single-Crystal Structure,” Probl. Prochn., No. 6, 17–22 (1991) [Strength of Materials (Engl. Transl.) 23 (6), 623–630 (1991)].

  38. E. N. Kablov and E. R. Golubovskii, Heat Resistance of Nickel Alloys (Mashinostroenie, Moscow, 1998) [in Russian].

    Google Scholar 

  39. E. R. Golubovskii and A. G. Demidov, “Estimation of Long-Term Strength of Alloy EI437BU-VD for Gas Turbine Disks in Combined Stress State,” Vestnik Dvigatelestr., No. 3, 106–110 (2008).

  40. T. N. Mozharovskaya, “Creep and Rupture Strength of Pearlitic and Austenitic Steels under Active Proportional Loading in a Plane Stress State,” Probl. Prochn., No. 4, 49–54 (1985) [Strength of Materials (Engl. Transl.) 17 (4), 498–504 (1985)].

  41. T. N. Mozharovskaya, “Stress-Rupture Strength and Creep Criteria for Metallic Materials with a Complex Stressed State,” Probl. Prochn., No. 2, 57–60 (1988) [Strength of Materials (Engl. Transl.) 20 (2), 201–205 (1988)].

  42. T. N. Mozharovskaya and N. I. Bobyr’, “Creep and Endurance of Materials in Complex Stress State,” Vestnik Kiev Politekhn. Inst. Mashinostr., No. 19, 25–28 (1982).

  43. Z. L. Kowalewski, “Biaxial Creep Study of Copper on the Basis of Isochronous Creep Surfaces,” Arch. Mech. 48(1), 89–109 (1996).

    Google Scholar 

  44. A. G. Demidov and R. N. Sizova, “Long-Term Strength and Creep of Heat-Resistant Alloys in Different Stress States,” in Structural Strength of Engines (Kuibyshev, 1974), pp. 12–13.

  45. Yu. K. Petrenya, “Long-Term Strength of Austenitic Steel in Complex Stress State,” Energomashinostr., No. 10, 27–28 (1980).

  46. S. E. Stanzl, A. S. Argon, and E. K. Tschegg, “Diffusive Intergranular Cavity Growth in Creep in Tension and Torsion,” Acta Metall. 31(6), 833–843 (1983).

    Article  Google Scholar 

  47. K. Kussmaul, K. Maile, and S. Sheng, “Beurteilung von mehrachsign Spannungs-Dehnungszustanden im Langzeitkriechbereich auf der Basis von Festigkeitshypothesen,” Materialwissenschaft und Werkstofftechnik 25(2), 71–78 (1994).

    Article  Google Scholar 

  48. A. A. Lebedev, “Experimental Study of Long-Term Strength of Chromium-Nickel Steel in Biaxial Tension,” in Thermal Strength of Materials and Structure Elements (Naukova Dumka, Kiev, 1965), pp. 77–83 [in Russian].

    Google Scholar 

  49. D. R. Hayhurst, “Creep Rupture under Multi-Axial States of Stress,” J.Mech. Phys. Solids 20(6), 381–390 (1972).

    Article  ADS  Google Scholar 

  50. A. V. Kiselev, “Influence of the Stress State Type on Fracture and Creep,” in Physics and Electronics of Solids, No. 1 (Izhevsk, 1976), pp. 35–41 [in Russian].

  51. V. P. Radchenko, E. V. Bashkinova, and S. N. Kubyshkina, “An Approach to Estimation of Long-Term Strength of Thick-Walled Tubes on the Basis of Integral Means of Stress States,” Vestnik. Samar. GTU. Ser. Fiz.-Mat. Nauki, No. 16, 96–103 (2002).

  52. E. V. Bashkinova and N. A. Kurkina, “Analysis of Kinetics of Integral Means of Equivalent Stresses for Thick-Walled Tubes in Creep,” in Mathematical Modeling and Boundary-Value Problems, Proc. 3rd All-Russia Sci. Conf., Pt. 1 (SamGTU, Samara, 2006), pp. 23–25.

    Google Scholar 

  53. I. N. Laguntsov and V. K. Svyatoslavov, “Long-Term Strength Testing of Boiler Superheater Tubes Made of Steel 12KhMF,” Teploenergetika, No. 7, 55–59 (1959) [Thermal Engng (Engl. Transl.)].

  54. Sh.N. Kats, “Estimation of Long-Term Strength of Carbonic Tubes,” Teploenergetika, No. 11, 37–40 (1955) [Thermal Engng (Engl. Transl.)].

  55. L. F. Kooistra, R. U. Blaser, and J. T. Tucker, “High Temperature Stress Rupture Testing of Tubular Specimens,” Trans. ASME 74(5), 783–792 (1952).

    Google Scholar 

  56. Sh. N. Kats, “Fracture of Austenitic Tubes by the Action of Internal Pressure under Creep Conditions,” Energomashinostr., No. 2, 1–5 (1957).

  57. Sh. N. Kats, “Influence of Additional Axial Forces on Long-Term Strength of Boiler Tubes,” Teploenergetika, No. 5, 12–16 (1960).

  58. R. J. Browne, D. Lonsdale, and P. E. J. Flewitt, “The Role of Stress State on the Creep Rupture of 1%cr1.2%Mo and 12%Cr1%MoVW Tube Steels,” in Creep and Fract. Eng. Mater. and Struct. Proc. Int. Conf., Swansea, 1981 (1981), pp. 545–558.

  59. D. Lonsdale and P. E. J. Flewitt, “The Effect of Hydrostatic Pressure on the Creep Life 2.25%Cr1%Mo Steel,” in Strength Met. and Alloys Proc. 5th Int. Conf., Aachen, 1979. Toronto e.a. 1980, Vol. 1 (1980), pp. 433–438.

    Google Scholar 

  60. A. M. Lokoshchenko and S. A. Shesterikov, “Examination of the Long-Term Strength of Metals in the Multiaxial Stress State,” Probl. Prochn., No. 12, 3–8 (1986) [Strength of Materials (Engl. Transl.) 18 (12), 1567–1572 (1986)].

  61. V. P. Golub, “Criteria for Long-Term Strength of Isotropic Materials in Plane Stress State,” in Theoretic and Applied Mechanics, Science-Technical Collection of Papers, No. 35 (Izdat. “Osnova”, Kharkov, 2002), pp. 3–19 [in Russian].

    Google Scholar 

  62. V. P. Golub, “Derivation of Creep Long-Term Fracture Criteria under Plane State of Stress,” Int. J. Mech. Sci. 47(12), 1807–1826 (2005).

    Article  MATH  Google Scholar 

  63. H. Cramer, Mathematical Methods of Statistics (Almquist and Wiskell, Stockholm, 1946; Mir, Moscow, 1975).

    MATH  Google Scholar 

  64. A. M. Lokoshchenko and V. V. Nazarov, “Choice of Long-Term Strength Criteria for Metals in Combined Stress State,” in Aerospace Engineering and Technology, No. 7(15) (KhAI, Kharkov, 2004), pp. 124–128 [in Russian].

    Google Scholar 

  65. V. P. Golub, V. V. Kasperskaya, and A. A. Rusinov, “Calculating the Time to Creep Failure of Thin-Walled Pipes under Internal Pressure,” Prikl. Mekh. 40(4), 44–52 (2004) [Int. Appl. Mech. (Engl. Transl.) 40 (4), 396–404 (2004)].

    MATH  Google Scholar 

  66. I. I. Trunin, “Strength Criterion in Creep in Complex Stress State,” Prikl. Mekh. 1(7), 77–83 (1965) [Int. Appl. Mech. (Engl. Transl.)].

    Google Scholar 

  67. I. I. Trunin, “Generalized Criterion for Resistance to Fracture of Materials in Complex Stress State,” Izv. Vyssh. Uchebn. Zaved. Mashostr., No. 8, 50–55 (1968).

  68. I. I. Trunin, “Temperature-Force Dependence of Resistance to Fracture of Heat-Resistant Materials with the Stress State Type Taken into Account,” Probl. Mashinostr. Nadezhn. Mashin, No. 3, 53–62 (1995) [J. Machinery Manufact. Reliabil. (Engl. Transl.)].

  69. S. T. Mileiko, “Creep Strength of Structural Materials with a Complex Stress State,” Dokl. Akad. Nauk SSSR 228(3), 562–565 (1976) [Sov. Phys. Dokl. (Engl. Transl.) 21, 288–289 (1976)].

    Google Scholar 

  70. A. M. Kovrizhnykh, V. D. Baryshnikov, A. V. Manakov, and A. F. Nikitenko, “Long-term Strength of Metals and Creep Equations Based on the Coulomb-Mohr Criterion,” Zh. Prikl. Mekh. Tekhn. Fiz. 48(6), 115–123 (2007) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 48 (6), 871–877 (2007)].

    Google Scholar 

  71. R. L. Huddleston, “An Improved Multiaxial Creep-Rupture Strength Criterion,” Trans. ASME. J. Pressure Vessel Technol. 107(4), 421–429 (1985).

    Article  Google Scholar 

  72. O. E. Olkhovik and E. O. Olkhovik, “Endurance of Structural Materials in Bulk Stress State,” Zavodskaya Laboratoriya bd63(7), 39–45 (1997).

    Google Scholar 

  73. K. N. Kan and Yu. S. Pervushin, “Choice of Strength Criterion for Rigid Thermosets,” Mekh. Polim., No. 4, 543–549 (1966) [Polimer Mech. (Engl. Transl.) 2 (4), 337–340 (1969)].

  74. V. A. Man’kovskii, “Long-Term Strength of Steels with Different Stress States,” Probl. Prochn., No. 1, 74–78 (1984) [Strength of Materials (Engl. Transl.) 16 (1), 87–92 (1984).

  75. V. A. Man’kovskii, “Criteria for Damage and Long-Term Strength of Structural Materials,” Mashinoved., No. 1, 87–94 (1985).

  76. G. W. Greenwood, “Grain Shape Effects on Interface-Controlled Diffusional Creep under Multiaxial Stresses,” Acta Met. et. Mater. 43(5), 1811–1816 (1995).

    Article  ADS  Google Scholar 

  77. I. A. Birger, “On a Criterion for Fracture and Plasticity,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 143–150 (1977) [Mech. Solids (Engl. Transl.)].

  78. W. Kissel and F. Blum, “Neue Festigkeitshypotese,” Schweizer. Techn. Z. 62(32), 641–645 (1965).

    Google Scholar 

  79. A. M. Lokoshchenko, “Estimation of Equivalent Stresses in the Analysis of Long-Term Strength of Metals under Combined Stress State,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 164–181 (2010) [Mech. Solids (Engl. Transl.) 45 (4), 633–647 (2010)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lokoshchenko.

Additional information

Original Russian Text © A.M. Lokoshchenko, 2012, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2012, No. 3, pp. 116–136.

About this article

Cite this article

Lokoshchenko, A.M. Long-term strength of metals in complex stress state (a survey). Mech. Solids 47, 357–372 (2012). https://doi.org/10.3103/S0025654412030090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654412030090

Keywords

Navigation