Skip to main content
Log in

Nonlinear dispersion properties of high-frequency waves in the gradient theory of elasticity

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The dispersion law ceases to be linear already at ultrasonic frequencies of elastic vibrations of particles as mechanical perturbation waves propagate through the medium. A variant of the continuum model of an elastic medium is proposed which is based on the assumption of pair and triplet potential interaction between infinitely small particles; this allows one to represent the dispersion law with any required accuracy. The corresponding wave equation, which is still linear, can have an arbitrarily large order of partial derivatives with respect to the coordinates. It is suggested that the results of comparing the representations of the dispersion law from the elasticity and solid-state physics viewpoints should be used to determine nonclassical characteristics of the elastic state of the medium. The theoretical conclusions are illustrated with calculations performed for plane waves propagating through aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Gorelik and M. Ya. Dashevskii, Semiconductor Materials and Metallography Materials Science of Semiconductors and Insulators (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  2. I. V. Vitcovsky, F. N. Konev, V. S. Shorkin, et al., “Adhesion Energy Estimation of Some Composite Materials,” Plasma Dev. Oper. 11(2), 81–87 (2003).

    Article  Google Scholar 

  3. E. M. Lifshitz, Theory of Molecular Attraction Forces between Condensed Bodies, in Collected Works of E. M. Lifshitz, Ed. by L. P. Pitaevskii and Yu. G. Rudnyi (FIZMATLIT, Moscow, 2004) [in Russian].

    Google Scholar 

  4. M. B. Partenskii, “Self-Consistent Electron Theory of a Metallic Surface,” Uspekhi Fiz. Nauk 128(1), 69–106 (1979) [Sov. Phys. Uspekhi (Engl. Transl.) 22 (5), 330–Ц351 (1979)].

    Article  Google Scholar 

  5. M. V. Mamonova, R. V. Poterin, and V. V. Prudnikov, “Calculations of the Adhesion Characteristics of Metals in the Model of Generalized Heine-Abarenkov Potential,” Vestnik Omsk Gos. Univ., No. 2, 44–46 (1996).

  6. M. N. Magomedov, “Dependence of the Surface Energy on the Size and Shape of a Nanocrystal,” Fiz. Tverd. Tela 46(5), 924–937 (2004) [Phys. Solid State (Engl. Transl.) 46 (5), 954–968 (2004)].

    Google Scholar 

  7. S. A. Lurie and P. A. Belov, “Theory of Media with Conserved Dislocations. Particular Cases: The Cosserat and Aero-Kuvshinskii Continua, Porous Media, and Media with’ Twinning’,” in Contemporary Problems of Mechanics of Heterogeneous Media, Vol. 1 (Inst. Problem Mekhaniki RAN, Moscow, 2005), pp. 100–132 [in Russian].

    Google Scholar 

  8. I. V. Vitkovsky, A. N. Konev, and V. S. Shorkin, “Predicting Adhesive Properties of Liquid-Metal Materials for Fusion Reactor Blankets,” Zh. Tekhn. Fiz. 79(2), 11–16 (2009) [Tech. Phys. (Engl. Transl.) 54 (2), 170–175 (2009)].

    Google Scholar 

  9. C. Kittel, Introduction to Solid-State Physics (Wiley, New York, 1971; Nauka, Moscow, 1978).

    Google Scholar 

  10. V. I. Erofeev,Wave Processes in Solids with Microstructure (Izd-vo MGU, Moscow, 1999) [in Russian].

    Google Scholar 

  11. V. I. Erofeev and V. M. Rodyushkin, “Observation of Elastic Wave Dispersion in Grained Composite and a Mathematical Model for Its Description,” Akust. Zh. 38(6), 1116–1117 (1992) [Sov. Phys. Acoust. (Engl. Transl.) 38, 611 (1992)].

    ADS  Google Scholar 

  12. H. Askes, T. Bennett, and E. C. Aifantis, “A New Formulation and CO-Implementation of Dynamically Consistent Gradient Elasticity,” Int. J. Numer. Engng 72(1), 111–126 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. C. Eringen, “Vistas of Nonlocal Continuum Physics,” Int. J. Engng Sci. 30(10), 1551–1565 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002).

    MATH  Google Scholar 

  15. N. F. Morozov and M. V. Paukshto,Discrete and Hybrid Models of Fracture Mechanics (Izdat. St. Petersburg Gos. Univ., St. Petersburg, 1995) [in Russian].

    Google Scholar 

  16. A. M. Krivtsov and V. P. Myasnikov, “Modeling of the Change of the Internal Structure and Stress State in a Material Subjected to High Thermal Loads on the Basis of the Particle Dynamics Method,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 88–103 (2005) [Mech. Solids (Engl. Transl.) 40 (1), 72–85 (2005)].

  17. A. D. B. Woods, W. Cochran, and B. N. Brockhouse, “Lattice Dynamics of Alkali Halide Crystals,” Phys. Rev. Ser. 2 119(3), 980–999 (1960).

    Google Scholar 

  18. A. C. Eringen, “Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves,” Int. J. Engng Sci 10(5), 425–435 (1972).

    Article  MATH  Google Scholar 

  19. A. A. Il’yushin and V. A. Lomakin, “Moment Theories in Mechanics of Solids,” in Strength and Plasticity (Nauka, Moscow, 1971), pp. 54–61 [in Russian].

    Google Scholar 

  20. Yu. Z. Povstenko, “Nonlocal Gradient Theory of Elasticity and Their Application to the Description ofDefects in Rigid Bodies,” Mat. Metody Fiz.-Mekh. Polya 46(2), 136–146 (2003).

    MATH  MathSciNet  Google Scholar 

  21. V. A. Gordon and V. S. Shorkin, “Effect Connected with Passing of High Frequency Longitudinal Wave through Film-Mount System in the Direction Normal to the Contact Plane,” in Proc. 27th Intern. Symp. on Acoust. Imaging, Saarbrucken, Germany, 2003 (2004), pp. 333–341.

  22. L. I. Sedov, Continuum Mechanics, Vol. 2 (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  23. D. V. Sivukhin, The General Course of Physics, Vol. 1: Mechanics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  24. A. A. Il’yushin, “Nonsymmetry of Strain and Stress Tensors in Continuum Mechanics,” Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 5, 6–14 (1996) [Moscow Univ. Math. Bull. (Engl. Transl.)].

  25. V. S. Shorkin, “Stress State of Materials under Nonclassical Actions,” in Problems of Nonlinear Mechanics, Collection of Papers on the Occasion of L. A. Tolokonnikov’s Eighties Birthday (Tula Gos. Univ., Tula, 2003), pp. 325–331 [in Russian].

    Google Scholar 

  26. W. Rudin, Principles of Mathematical Analysis (New York, 1964; Mir, Moscow, 1966).

  27. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  28. R. A. Tupin, “Theories of elasticity with couple-stress,” Arch. Rat. Mech. Anal. 17, 85–112 (1964) [in Mechanics, Periodic Collection of Translations of Foreign Papers (Russ. Transl.), No. 3, 113–140 (1965)].

    Google Scholar 

  29. V. L. Berdichevskii, Variational Principles of Continuum Mechanics (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  30. W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1975).

    Google Scholar 

  31. V. M. Kontorovich, “Dynamic Equations of the Theory of Elasticity of Metals,” Uspekhi Fiz. Nauk 142(2), 265–307 (1984) [Sov. Phys. Uspekhi (Engl. Transl.) 27 (2), 134Ц–158 (1984)].

    Article  MathSciNet  Google Scholar 

  32. L. A. Girifalco, Statistical Physics of Materials, 1973 Statistical Mechanics of Solids (Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  33. J. E. Mayer and M. Geppert-Mayer, Statistical Mechanics (Wiley, New York, 1977; Mir, Moscow, 1980).

    MATH  Google Scholar 

  34. A. M. Krivtsov and N. V. Krivtsova, “Method of Particles and Its Application to Mechanics of Solids,” Dal’nevost. Mat. Zh. 3(2), 254–276 (2002).

    Google Scholar 

  35. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969; Mir, Moscow, 1971).

    MATH  Google Scholar 

  36. A. S. Azarov and V. S. Shorkin, “Consideration of the Influence of Three-Particle Interaction in Elastic Continuum on Its Mechanical Characteristics,” in Proc. 47th Intern. Conf. “Actual Problems of Strength” (Nizhnii Novgorod, 2008), pp. 163–165 [in Russian].

  37. A. S. Azarov and V. S. Shorkin, “A Version of Taking Account of the Triple Potential Interaction in Many-Particle System,” Electronic Journal “Investigated in Russia” 8, 65–71 (2009), http://zhurnal.ape.relarn.ru/articles/2009/008.pdf.

    Google Scholar 

  38. M. Born and H. Kun, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954; Izd-vo Inostr. Liter., Moscow, 1958).

    MATH  Google Scholar 

  39. G. Leibfried, Microscopic Theory of Mechanical and Thermal Properties of Crystals (Fizmatgiz, Moscow-Leningrad, 1963) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Shorkin.

Additional information

Original Russian Text © V.S. Shorkin, 2011, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2011, No. 6, pp. 104–121.

About this article

Cite this article

Shorkin, V.S. Nonlinear dispersion properties of high-frequency waves in the gradient theory of elasticity. Mech. Solids 46, 898–912 (2011). https://doi.org/10.3103/S0025654411060094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654411060094

Keywords

Navigation