Skip to main content
Log in

Loss of stability, characteristic length, and Novozhilov-Neuber criterion in fracture mechanics

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The present paper presents a summary of results in fracture mechanics obtained using the fundamental propositions put forward by V. V. Novozhilov in 1969. Namely, fracture is treated as loss of stability, the role of a structural parameter having the dimension of length is emphasized, and the importance of the Novozhilov-Neuber force criterion is stressed; this criterion allows obtaining simple and far-reaching generalizations. The main attention is paid to the results obtained by the author either in collaboration with Professor Novozhilov or as a result of close communication with him for almost two decades. The force treatment of the strict stability condition, which implies using a linear softening in the crack tip region, and the estimate of the maximal speed of crack propagation, based on a structural-time criterion, are performed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Lin’kov, “Plastic Deformation of aWasher Soldered in a Plate,” Izv. Akad. Nauk SSSR.Mekh. Tverd. Tela, No. 1, 80–85 (1971) [Mech. Solids (Engl. Transl.)].

  2. A.M. Lin’kov and V. V. Novozhilov, “Extremum Principles for Infinite Domains,” in Progress in Mechanics of Deformable Bodies. Dedicated to Academician B. G. Galerkin on the Occasion of his 100th Anniversary (Nauka, Moscow, 1975), pp. 350–354 [in Russian].

    Google Scholar 

  3. V. V. Novozhilov, “On a Necessary and Sufficient Criterion for Brittle Strength,” Prikl. Mat. Mekh. 33(2), 212–222 (1969) [J. Appl.Math. Mech. (Engl. Transl.) 33 (2), 201–210 (1969)].

    Google Scholar 

  4. H. Neuber, Theory of Notch Stresses (J.W. Edwards, Ann Arbor, Michigan, 1946; Gostekhizdat,Moscow-Leningrad, 1947).

    Google Scholar 

  5. M. Ya. Leonov and V. V. Panasyuk, “Propagation of Very Small Cracks in Solids,” Prikl. Mekh. 5(4), 391–401 (1959).

    MathSciNet  Google Scholar 

  6. I. M. Petukhov and A. M. Lin’kov, “The Theory of Post-Failure Deformation and the Problem of Stability in Rock Mechanics,” Int. J. Rock Mech.Mining Sci. Geomech. Abstr. 16(2), 57–76 (1979).

    Article  Google Scholar 

  7. A. M. Lin’kov and M. A. Tleuzhanov, “Calculation of Local Zones of Irreversible Deformation at the Crack Tip,” Izv. AN KirgSSR. Fiz.-Tekh.Mat. Nauki, No. 1, 47–51 (1990).

  8. J. Rice, “A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks,” Trans. ASME. Ser. E, J. Appl. Mech. 35(2), 379–387 (1968).

    MathSciNet  Google Scholar 

  9. A. M. Lin’kov, “Stability Conditions in Fracture Mechanics,” Dokl. Akad. Nauk SSSR 233(1), 45–48 (1977) [Sov. Phys. Dokl. (Engl. Transl.) 22 (3), 133–137 (1977)].

    MathSciNet  Google Scholar 

  10. V. V. Novozhilov, Foundations of Nonlinear Theory of Elasticity (Gostekhizdat, Moscow-Leningrad, 1948) [in Russia].

    Google Scholar 

  11. L.M. Kachanov, Foundations of Fracture Mechanics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  12. A. M. Lin’kov and V. V. Novozhilov, “To the Question on the Theory of Crack Growth,” in Strength of Materials and Constructions (Naukova Dumka, Kiev, 1975), pp. 357–363 [in Russian].

    Google Scholar 

  13. A.M. Lin’kov, “Stability of Inelastic, Geometrically Nonlinear, Discrete Systems,” Dokl. Akad. Nauk SSSR 294(1), 44–47 (1987) [Sov. Phys. Dokl. (Engl. Transl.) 32 (5), 376–378 (1987)].

    MathSciNet  Google Scholar 

  14. G. Maier and D. C. Drucker, “Effects of Geometry Change on Essential Features of Inelastic Behavior,” J. Engng Mech. Div. ASCE 99(EM4), 819–834 (1973).

    Google Scholar 

  15. A.M. Lin’kov,Dynamic Phenomena in Mines and the Problem of Stability (Int. Soc. Rock Mech., Lisboa, Cedex, Portugal, 1994).

  16. F. Shanley, “Inelastic Column Theory,” J. Aeronaut. Sci. 14(5), 261–268 (1947).

    Google Scholar 

  17. A. M. Lin’kov and A. A. Dobroskok, “On Bifurcation and Instability due to Softening,” in Proc. Int. Workshop “Bifurcation and Instabilities in Geomechanics, IWBI-2002”, Ed. by J. R. Labuz and A. Drescher (Swets and Zeitlinger, Lisse, The Netherlands, 2003), pp. 17–28.

    Google Scholar 

  18. A. M. Lin’kov, “Boundary Value Problem for Crack Growth in Viscoelastic Media,” Int. J. Fract. 65(3), 197–218 (1994).

    Google Scholar 

  19. A. M. Lin’kov, “Key-Note Address: Equilibrium and Stability of Rock Masses,” in Proc. 8th Int. Congr. on RockMechanics, Ed. by T. Fujji, Vol. 3 (Balkema, Rotterdam, 1995), pp. 1049–1054.

    Google Scholar 

  20. A. M. Lin’kov, “Schlumberger Award Lecture: Rockbursts and Instability of Rocks Masses,” Int. J. Rock Mech.Mining Sci. Geomech. Abstr. 33(7), 727–732 (1996).

    Article  Google Scholar 

  21. A. M. Lin’kov, “Key-Note Address: New Geomechanical Approaches to Develop Quantitative Seismicity,” in Proc. 4th Int. Symp. “Rockbursts and Seismicity in Mines”, Ed. by S. J. Gibowicz and S. Lasocki (Balkema, Rotterdam, 1997), pp. 151–166.

    Google Scholar 

  22. A. M. Lin’kov, “Key-Note Lecture: Integration of Numerical Modeling and Seismic Monitoring: General Theory and First Steps,” in Proc. Int. Conf. “New Development in Rock Mechanics, Ed. by Yunmei Lim (Rinton Press, New York, 2002), pp. 259–264.

    Google Scholar 

  23. A.M. Lin’kov, “NumericalModeling of Seismic and Aseismic Events in Geomechanics,” Fiz.-Tekhn. Probl. Razrab. Polez. Iskopaemykh, No. 1, 19–33 (2005).

  24. A. M. Linkov, “On Numerical Modeling of Seismic and Aseismic Events in 3D Problems of Mechanics,” Fiz.-Tekhn. Probl. Razrab. Polez. Iskopaemykh, No. 1, 3–16 (2006).

  25. A.M. Linkov, Boundary Integral Equations in Elasticity Theory (Kluwer, Dordrecht etc., 2002).

    MATH  Google Scholar 

  26. A. A. Dobroskok, A. Ghassemi, and A. M. Linkov, “Extended Structural Criterion for Numerical Simulation of Crack Propagation under Compressive Loads,” Int. J. Fract. 133(3), 223–246 (2005).

    Article  MATH  Google Scholar 

  27. A. A. Dobroskok, A. Ghassemi, and A. M. Linkov, “Numerical Simulation of Crack Propagation Influenced by Thermal and Porous Liquid Stresses,” Int. J. Fract. 134(2), L29–L34 (2005).

    Article  Google Scholar 

  28. A. A. Dobroskok, L. Fradkin, A. M. Linkov, and G. Mishuris, “Crack Redirection with Thermal Secondary Loading,” Eng. Fract. Mech. 74(11), 1719–1726 (2007).

    Article  Google Scholar 

  29. V. V. Zubkov, V. F. Koshelev, and A. M. Lin’kov, “Numerical Modeling of Hydraulic Fracture Initiation and Development,” Fiz.-Tekh. Probl. Razrab. Polez. Iskopaemykh, No. 1, 45–63 (2007) [J. Mining Sci. (Engl. Transl.) 43 (1), 40–56 (2007)].

  30. A.M. Lin’kov and V. F. Koshelev, “Multi-Wedge Singular Points inMaterials: Theory,Numerical Techniques and Applications,” in Proc. 4th Int. Conf. “Mathematical Modeling and Computer Simulation of Materials Technologies, MMT-2006, Vol. 1 (The College of Judea and Samaria, Ariel, Israel, 2006), pp. I-48–I-56.

    Google Scholar 

  31. N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, “To Calculations of Intensity of Pulse Dynamic Loads in Crack Mechanics,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 5, 180–182 (1988) [Mech. Solids (Engl. Transl.)].

  32. V. A. Bratov, N. F. Morozov, and Yu. V. Petrov, Dynamic Strength of Continuum (St. Petersburg Univ. Press, St. Petersburg, 2009).

    Google Scholar 

  33. A.M. Lin’kov, “The Size of the End Zone and the Propagation Velocity of a Displacement Jump,” Prikl. Mat. Mekh. 69(1), 144–149 (2005) [J. Appl. Math. Mech. (Engl. Transl.) 69 (1), 135–140 (2005)].

    MATH  Google Scholar 

  34. A. M. Lin’kov, “A Theory of Rupture Pulse on Softening Interface with Application to the Chi-Chi Earthquake,” J. Geophys. Res. 111, B09307.1–B09307.14 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Lin’kov.

Additional information

Original Russian Text © A.M. Lin’kov, 2010, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2010, No. 6, pp. 98–111.

To the memory of Teacher and Friend

About this article

Cite this article

Lin’kov, A.M. Loss of stability, characteristic length, and Novozhilov-Neuber criterion in fracture mechanics. Mech. Solids 45, 844–855 (2010). https://doi.org/10.3103/S0025654410060087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654410060087

Keywords

Navigation