Advertisement

Mechanics of Solids

, Volume 45, Issue 4, pp 501–518 | Cite as

Foundations of physical mesomechanics of structurally inhomogeneous media

  • V. E. PaninEmail author
  • Yu. V. Grinyaev
  • V. E. Egorushkin
Article

Abstract

We present the basic principles of physical mesomechanics of structurally inhomogeneous media; the theory is developed on the basis of common approaches of nonequilibrium thermodynamics, gauge theory of defects, and mechanics of structured media. Within a multilevel approach, the plastic deformation evolution is considered in the entire hierarchy of structure-scale levels: at the nano, micro, meso, and macro level. Fracture is treated as the final stage of increasing disequilibrium of a solid, when the nonequilibrium thermodynamical Gibbs potential becomes zero and the structure-phase decay of the crystal occurs.

Key words

physic mesomechanics gauge theories structure-scale levels nonlinear waves deformation fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Panin, Yu. V. Grinyaev, T. F. Elsukova, and A.G. Ivanchin, “Structural Levels of Deformation in Solids,” Izv. Vyssh. Uchebn. Zaved. Fiz. 25(6), 5–27 (1982) [Sov. Phys. J. (Engl. Transl.) 25 (6), 479–497 (1982)].Google Scholar
  2. 2.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structure Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  3. 3.
    V. E. Panin (Editor), Structure Levels of Plastic Deformation and Fracture (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  4. 4.
    V. E. Panin (Editor), Physical Mesomechanics and Computer Simulation of Materials (Nauka, Novosibirsk, 1995) [in Russian].Google Scholar
  5. 5.
    V. E. Panin (Editor), Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials (Cambridge Interscience Publ., Cambridge, 1998).Google Scholar
  6. 6.
    V. E. Panin, “Overview on Mesomechanics of Plastic Deformation and Fracture of Solids,” Theor. Appl. Fract.Mech. 30(1), 1–11 (1998).CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. E. Panin and V. E. Egorushkin, “Nonequilibrium Thermodynamics of a Deformed Solid as a Multiscale System. Corpuscular-Wave Dualism of Plastic Shear,” Fizich. Mezomekh. 11(2), 9–30 (2008) [Phys. Mesomech. (Engl. Transl.) 11 (3–4), 105–123 (2008)].Google Scholar
  8. 8.
    V. E. Panin and Yu. V. Grinyaev, “Physical Mesomechanics — a New Paradigm on the Intersection of Physics and Deformable Body Mechanics,” Fizich.Mezomekh. 6(4), 9–36 (2003) [Phys.Mesomech. (Engl. Transl.)].Google Scholar
  9. 9.
    M. A. Leontovich, “On the Free Energy of a Nonequilibrium State,” Zh. Eksp. Teor. Fiz. 8(7), 844–854 (1938).Google Scholar
  10. 10.
    P. C. Hohenberg and B. I. Shraiman, “Chaotic Behavior of an Extended System,” Physica D 37, 109–115 (1989).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    V. E. Panin, “Strain-Induced Defects in Solids at the Different Scale Levels of Plastic Deformation and the Nature of Their Sources,” Mater. Sci. Engng A 319–321, 197–200 (2001).CrossRefGoogle Scholar
  12. 12.
    V. E. Panin, V. E. Egorushkin, A. V. Panin, and D. D. Moiseenko, “On the Nature of Plastic Strain Localization in Solids,” Zh. Tekh. Fiz. 77(8), 62–69 (2007) [Tech. Phys. (Engl. Transl.) 52 (8), 1024–1030 (2007)].Google Scholar
  13. 13.
    V. E. Panin (Editor), Surface Layers and Intrinsic Boundaries in Heterogeneous Materials (Izd-vo SO RAN, Novosibirsk, 2006) [in Russian].Google Scholar
  14. 14.
    J. Gilman and W. Johnston, “Origination of Dislocations in LiF Crystals under Low Stresses,” in Dislocations and Mechanical Properties of Crystals (Inostr. Lit., Moscow, 1960), pp. 393–394 [in Russian].Google Scholar
  15. 15.
    J. D. Eshelby, in Boundary Problems (North-Holland Publ., Amsterdam, 1979), Vol. 1, pp. 167–220.Google Scholar
  16. 16.
    L.G. Orlov, “Generation of Dislocations on External and Internal Surfaces of Crystals,” Fiz. Tverd. Tela 9(8), 2345–2349 (1967) [Sov. Phys. Solid State (Engl. Transl.) 9 (8), 1836–1839 (1968)].Google Scholar
  17. 17.
    V. P. Alekhin, Physics of Strength and Plasticity of Surface Layers of Materials (Nauka, Moscow, 1983) [in Russian].Google Scholar
  18. 18.
    V.E. Panin, D.D. Moiseenko, P. V. Maksimov, and A. V. Panin, “Physical Mesomechanics of a Solid Treated as a Multilevel System. III. Inelastic Forerunner of Plastic Shear Origination,” Fizich. Mezomekh. 9(5), 5–15 (2006) [Phys. Mesomech. (Engl. Transl.)].Google Scholar
  19. 19.
    Yu. V. Grinyaev and V. E. Panin, “Stress State in Elastically Loaded Polycrystal,” Izv. Vyssh. Uchebn. Zaved. Fiz. 21(12), 95–101 (1978) [Sov. Phys. J. (Engl. Transl.) 21 (12), 1598 (1978)].Google Scholar
  20. 20.
    G. P. Cherepanov, “On the Theory of Thermal Stresses in a Thin Bonding Layer,” J. Appl. Phys. 78, 6826–6832 (1995).CrossRefADSGoogle Scholar
  21. 21.
    I. F. Golovnev, E. I. Golovneva, and V. M. Fomin, “Effect of Interfaces on Mechanical Properties of Heterostructures,” Fizich. Mezomekh. 12(4), 43–46 (2009) [Phys. Mesomech. (Engl. Transl.) 12 (5–6), 235–238 (2009)].Google Scholar
  22. 22.
    V. E. Egorushkin, “Dynamics of Plastic Deformation.Waves of Localized Plastic Deformation in Solids,” Izv. Vyssh. Uchebn. Zaved. Fiz. 35(4), 19–41 (1992) [Russ. Phys. J. (Engl. Transl.) 35 (4), 316–334 (1992)].Google Scholar
  23. 23.
    F. D. Murnaghan, Finite Deformation of Elastic Solid (Wiley, New York, 1951).zbMATHGoogle Scholar
  24. 24.
    V. E. Panin, A. V. Panin, and D. D. Moiseenko, “Physical Mesomechanics of a Deformed Solid as a Multilevel System. II. Chessboard-Like Mesoeffect of the Interface in Heterogeneous Media in External Fields,” Fizich. Mezomekh. 9(6), 5–15 (2006) [Phys.Mesomech. (Engl. Transl.) 10 (1–2), 5–14 (2007)].Google Scholar
  25. 25.
    A. V. Panin, “NonlinerWaves of Localized Plastic Flow in Nanostructure Surface Layers of Solids and Thin Films,” Fizich.Mezomekh. 8(3), 5–17 (2005) [Phys. Mesomech. (Engl. Transl.)].Google Scholar
  26. 26.
    P. V. Makarov, “On Hierarchical Nature of Deformation and Fracture of Solids,” Fizich. Mezomekh. 7(4), 25–34 (2004) [Phys. Mesomech. (Engl. Transl.)].Google Scholar
  27. 27.
    V.A. Romanova, Z. Z. Balokhonov, and N. I. Karpenko, “Modeling of Mechanical Behavior of Materials with Three-Dimensional Internal Structure Taken into Account,” Fizich. Mezomekh. 7(2), 71–79 (2004) [Phys. Mesomech. (Engl. Transl.)].Google Scholar
  28. 28.
    S. G. Psakhie, Ya. Khori, S. Yu. Korostelev, et al., “Variable Cellular Automaton Method as a Tool for Modeling in the Framework of Physical Mesomechanics,” Izv. Vyssh. Uchebn. Zaved. Fiz. 38(11), 58–69 (1995) [Sov. Phys. J. (Engl. Transl.)].Google Scholar
  29. 29.
    V. E. Panin, Yu. V. Grinyaev, V. E. Egorushkin, et al., “Excited State Spectrum and Vortex Mechanical Field in a Deformable Crystal,” Izv. Vyssh.Uchebn. Zaved. Fiz. 30(1), 36–51 (1987) [Sov. Phys. J. (Engl. Transl.) 30 (1), 34 (1987)].Google Scholar
  30. 30.
    N. V. Chertova and Yu. V. Grinyaev, “Description of Heterogeneous Solids in the Framework of the Gauge Approach,” Fizich. Mezomekh. 9(5), 17–25 (2006) [Phys. Mesomech. (Engl. Transl.) 10 (1–2), 69–77 (2007)].Google Scholar
  31. 31.
    V. E. Panin, “Synergetic Principles of Physical Mesomechanics,” Fizich. Mezomekh. 3(6), 5–36 (2000) [Phys. Mesomech. (Engl. Transl.)].Google Scholar
  32. 32.
    S. Yoshida, “Dynamics of Plastic Deformation Based on Restoring and Energy Dissipative Mechanisms in Plasticity,” Fizich. Mezomekh. 11(2), 31–32 (2008) [Phys. Mesomech. (Engl. Transl.) 11 (3–4), 137–143 (2008)].Google Scholar
  33. 33.
    V. E. Panin, T. F. Elsukova, V. E. Egorushkin, et al., “NonlinearWave Effects of Curvature Solitons in Surface Layers of High-Purity Aluminum Polycrystals under Severe Plastic Deformation. I. Experiment,” Fizich. Mezomekh. 10(6), 21–32 (2007) [Phys.Mesomech. (Engl. Transl.) 11 (1–2), 63–72 (2008)].Google Scholar
  34. 34.
    V. E. Panin, N. S. Surikova, T. F. Elsukova, et al., “Nanostructured Phase Boundaries in Aluminum under Cyclic Intensive Plastic Deformation,” Fizich. Mezomekh. 12(6), 5–16 (2009).Google Scholar
  35. 35.
    Yu. V. Grinyaev and N. V. Chertova, “The Gauge Theory of Plastic Deformation in Continuum Mechanics,” Izv. Vyssh. Uchebn. Zaved. Fiz. 33(2), 36–50 (1990) [Russ. Phys. J. (Engl. Transl.) 33 (2), 123 (1990)].MathSciNetGoogle Scholar
  36. 36.
    Yu. V. Grinyaev, “Gauge-Invariant Description of Structure-Inhomogeneous Media Deformation,” in Physical Mesomechanics and Computer Construction of Materials, Ed. by V. E. Panin (Nauka, Novosibirsk, 1995), Vol. 1, pp. 102–112 [in Russian].Google Scholar
  37. 37.
    V. I. Vladimirov and A. E. Romanov, Disclination in Crystals (Nauka, Leningrad, 1986) [in Russian].Google Scholar
  38. 38.
    V. E. Panin, E. E. Deryugin, Z. Schmauder, and I.V. Storozhenko, “Strain Localization Effects in Composites Based on Al with Al2O3 inclusions,” Fizich.Mezomekh. 12(6), 5–16 (2009).Google Scholar
  39. 39.
    V. E. Panin, L. S. Derevyagina, E. E. Deryugin, et al., “Laws of Prefracture Stage in Physical Mesomechanics,” Fizich.Mezomekh. 6(6), 97–106 (2003).Google Scholar
  40. 40.
    Yu. V. Grinyaev, N. V. Chertova, and V. E. Panin, “Dynamical Equations of an Ensemble of Defects in the Presence of Disoriented Substructures,” Zh. Tekh. Fiz. 68(9), 134–135 (1998) [Tech. Phys. (Engl. Transl.) 42 (9), 1128–1129 (1998)].Google Scholar
  41. 41.
    N. V. Chertova and Yu. V. Grinyaev, “Propagation Characteristics of Plane Waves of Defects in a Viscoplastic Medium,” Pis’ma Zh. Teoret. Fiz. 25(18), 91–94 (1999) [Tech. Phys. Lett. (Engl. Transl.) 25 (9), 756–757 (1999)].Google Scholar
  42. 42.
    V. V. Rybin, Large Plastic Strains and Metal Fracture (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  43. 43.
    I. Yu. Smolin, P. V. Makarov, and R. A. Bakeev, “Generalized Model of Elastoplastic Medium with Independent Plastic Rotations,” Fizich. Mezomekh. 7 (Special Issue, Pt. 1), 89–92 (2004).Google Scholar
  44. 44.
    L. S. Derevyagina, V. E. Panin, and A. I. Gordienko, “Self-Organization of Plastic Shears in Localized Deformation Macrobands in the Neck of High-Strength Polycrystals, Its Role in Material Fracture under Uniaxial Tension,” Fizich. Mezomekh. 10(4), 59–72 (2007) [Phys. Mesomech. (Engl. Transl.) 11 (1–2), 51–62 (2008)].Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • V. E. Panin
    • 1
    Email author
  • Yu. V. Grinyaev
    • 1
  • V. E. Egorushkin
    • 1
  1. 1.Institute of Strength Physics and Materials ScienceSiberian Branch of Russian Academy of SciencesTomskRussia

Personalised recommendations