Skip to main content
Log in

Using the Grasshopper Optimization Algorithm for Fuzzy Classifier Design

  • INFORMATION PROCESSES
  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

The paper describes three stages in the construction of a fuzzy classifier. The first refers to the formation of fuzzy rules, the second stage is feature selection, and the third stage is optimization of membership functions parameters. The influence of clustering methods on the efficiency of the formed fuzzy classifier rules was estimated by three different fitness functions. These functions were total variance, the Davies–Bouldin index, and the Calinski–Harabasz index. The grasshopper optimization algorithm was binarized using S- and V-shaped transformation functions for feature selection. The constructed classifiers have been tested on datasets from the KEEL repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Masoumi, N. and Khajavi, R., A fuzzy classifier for evaluation of research topics by using keyword co-occurrence network and sponsors information, Scientometrics, 2023, vol. 128, no. 3, pp. 1485–1512. https://doi.org/10.1007/s11192-022-04618-w

    Article  Google Scholar 

  2. Zadeh, L.A., Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets Syst., 1997, vol. 90, no. 2, pp. 111–127. https://doi.org/10.1016/s0165-0114(97)00077-8

    Article  MathSciNet  Google Scholar 

  3. Varshney, A.K. and Torra, V., Literature review of the recent trends and applications in various fuzzy rule-based systems, Int. J. Fuzzy Syst., 2023, vol. 25, no. 6, pp. 2163–2186. https://doi.org/10.1007/s40815-023-01534-w

    Article  Google Scholar 

  4. Hodashinsky, I.A., Methods for improving the efficiency of swarm optimization algorithms. A survey, Autom. Remote Control, 2021, vol. 82, no. 6, pp. 935–967. https://doi.org/10.1134/S0005117921060011

    Article  MathSciNet  Google Scholar 

  5. Bardamova, M.B. and Hodashinsky, I.A., Formation of fuzzy classifier structure by a combination of the class extremum algorithm and the shuffled frog leaping algorithm for imbalanced data with two classes, Optoelectron., Instrum. Data Process., 2021, vol. 57, no. 4, pp. 378–387. https://doi.org/10.3103/S8756699021040026

    Article  ADS  Google Scholar 

  6. Angelov, P.P. and Buswell, R.A., Automatic generation of fuzzy rule-based models from data by genetic algorithms, Inf. Sci., 2003, vol. 150, nos. 1–2, pp. 17–31. https://doi.org/10.1016/s0020-0255(02)00367-5

    Article  Google Scholar 

  7. Mansoori, E.G., Zolghadri, M.J., and Katebi, S.D., SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data, IEEE Trans. Fuzzy Syst., 2008, vol. 16, no. 4, pp. 1061–1071. https://doi.org/10.1109/tfuzz.2008.915790

    Article  Google Scholar 

  8. García, D., González, A., and Pérez, R., Overview of the SLAVE learning algorithm: A review of its evolution and prospects, Int. J. Comput. Intell. Syst., 2014, vol. 7, no. 6, pp. 1194–1221. https://doi.org/10.1080/18756891.2014.967008

    Article  Google Scholar 

  9. Galea, M. and Shen, Q., Simultaneous ant colony optimization algorithms for learning linguistic fuzzy rules, Swarm Intelligence in Data Mining, Abraham, A., Grosan, C., and Ramos, V., Eds., Studies in Computational Intelligence, vol. 34, Berlin: Springer, 2006, pp. 75–99. https://doi.org/10.1007/978-3-540-34956-3_4

  10. Prado, R.P., Garcia-Galan, S., Munoz Exposito, J.E., and Yuste, A.J., Knowledge acquisition in fuzzy-rule-based systems with particle-swarm optimization, IEEE Trans. Fuzzy Syst., 2010, vol. 18, no. 6, pp. 1083–1097. https://doi.org/10.1109/tfuzz.2010.2062525

    Article  Google Scholar 

  11. Rini, D.P., Shamsuddin, S.M., and Yuhaniz, S.S., Particle swarm optimization for ANFIS interpretability and accuracy, Soft Comput., 2014, vol. 20, no. 1, pp. 251–262. https://doi.org/10.1007/s00500-014-1498-z

    Article  Google Scholar 

  12. Chiu, S.L., Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst., 1994, vol. 2, no. 3, pp. 267–278. https://doi.org/10.3233/ifs-1994-2306

    Article  Google Scholar 

  13. Wong, C., Chen, C., and Yeh, S., K-means-based fuzzy classifier design, Ninth IEEE Int. Conf. on Fuzzy Systems. FUZZ-IEEE 2000, San Antonio, Texas, 2000, IEEE, 2000, vol. 1, pp. 48–52. https://doi.org/10.1109/FUZZY.2000.838632

  14. Priyono, A., Ridwan, M., Alias, A.J., O. K. Rahmat, R.A., Hassan, A., and Mohd. Ali, Mohd.A., Generation of fuzzy rules with subtractive clustering, Jurnal Teknologi, 2005, vol. 43, no. 1, pp. 143–153. https://doi.org/10.11113/jt.v43.782

    Article  Google Scholar 

  15. Svetlakov, M.O. and Hodashinsky, I.A., Clustering-based rule generation methods for fuzzy classifier using autonomous data partitioning algorithm, J. Phys.: Conf. Ser., 1989, vol. 1989, no. 1, p. 012032. https://doi.org/10.1088/1742-6596/1989/1/012032

    Article  Google Scholar 

  16. Gu, X., Angelov, P.P., and Príncipe, J.C., A method for autonomous data partitioning, Inf. Sci., 2018, vols. 460–461, no. 461, pp. 65–82. https://doi.org/10.1016/j.ins.2018.05.030

    Article  Google Scholar 

  17. Koryshev, N.P. and Khodashinskii, I.A., Algorithm to forming a rule base for a fuzzy classifier designed on the basis of the K-means clustering algorithm and the whale optimization algorithm, Doklady Tomskogo Gosudarstvennogo Universiteta Sistem Upravleniya Radioelektroniki, 2021, vol. 24, no. 1, pp. 42–47. https://doi.org/10.21293/1818-0442-2021-24-1-42-47

    Article  Google Scholar 

  18. Al-Shammaa, M. and Abbod, M.F., Automatic generation of fuzzy classification rules from data, Int. J. Fuzzy Syst. Adv. Appl., 2022, vol. 9, pp. 63–68. https://doi.org/10.46300/91017.2022.9.10

    Article  Google Scholar 

  19. Lughofer, E., Evolving multi-label fuzzy classifier, Inf. Sci., 2022, vol. 597, pp. 1–23. https://doi.org/10.1016/j.ins.2022.03.045

    Article  MathSciNet  Google Scholar 

  20. Nie, J.H. and Lee, T.H., Rule-based modeling: Fast construction and optimal manipulation, IEEE Trans. Syst., Man, Cybern., Part A: Syst. Hum., 1996, vol. 26, no. 6, pp. 728–738. https://doi.org/10.1109/3468.541333

    Article  Google Scholar 

  21. Cintra, M.E., Monard, M.C., and Camargo, H.A., FCA-based rule generator, a framework for the genetic generation of fuzzy classification systems using formal concept analysis, 2015 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), Istanbul, 2015, IEEE, 2015, pp. 1–8. https://doi.org/10.1109/fuzz-ieee.2015.7337950

  22. Ganter, B., Stumme, G., and Wille, R., Formal Concept Analysis: Foundations and Applications, Lecture Notes in Computer Sciences, vol. 3626, Berlin: Springer, 2005. https://doi.org/10.1007/978-3-540-31881-1

  23. Amaldi, E. and Kann, V., On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theor. Comput. Sci., 1998, vol. 209, nos. 1–2, pp. 237–260. https://doi.org/10.1016/s0304-3975(97)00115-1

    Article  MathSciNet  Google Scholar 

  24. Jimenez, F., Martinez, C., Marzano, E., Palma, J.T., Sanchez, G., and Sciavicco, G., Multiobjective evolutionary feature selection for fuzzy classification, IEEE Trans. Fuzzy Syst., 2019, vol. 27, no. 5, pp. 1085–1099. https://doi.org/10.1109/tfuzz.2019.2892363

    Article  Google Scholar 

  25. Bolon-Canedo, V., Sanchez-Marono, N., and Alonso-Betanzos, A., Feature Selection for High-Dimensional Data, London: Springer, 2015.

    Book  Google Scholar 

  26. Singh, D. and Singh, B., Hybridization of feature selection and feature weighting for high dimensional data, Appl. Intell., 2018, vol. 49, no. 4, pp. 1580–1596. https://doi.org/10.1007/s10489-018-1348-2

    Article  Google Scholar 

  27. Hodashinsky, I.A. and Sarin, K.S., Feature selection for classification through population random search with memory, Autom. Remote Control, 2019, vol. 80, no. 2, pp. 324–333. https://doi.org/10.1134/S0005117919020103

    Article  MathSciNet  Google Scholar 

  28. Yang, J. and Honavar, V., Feature subset selection using a genetic algorithm, IEEE Intell. Syst., 1998, vol. 13, no. 2, pp. 44–49. https://doi.org/10.1109/5254.671091

    Article  Google Scholar 

  29. Hodashinsky, I.A. and Mekh, M.A., Fuzzy classifier design using harmonic search methods, Program. Comput. Software, 2017, vol. 43, no. 1, pp. 37–46. https://doi.org/10.1134/s0361768817010030

    Article  MathSciNet  Google Scholar 

  30. Vieira, S.M., Sousa, J.M.C., and Runkler, T.A., Ant colony optimization applied to feature selection in fuzzy classifiers, Foundations of Fuzzy Logic and Soft Computing, Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., and Pedrycz, W., Eds., Lecture Notes in Computer Science, vol. 4529, Berlin: Springer, 2007, pp. 778–788. https://doi.org/10.1007/978-3-540-72950-1_76

    Book  Google Scholar 

  31. Banitalebi, A., Aziz, M.I.A., and Aziz, Z.A., A self-adaptive binary differential evolution algorithm for large scale binary optimization problems, Inf. Sci., 2016, vols. 367–368, no. 368, pp. 487–511. https://doi.org/10.1016/j.ins.2016.05.037

    Article  Google Scholar 

  32. Hodashinsky, I., Sarin, K., Shelupanov, A., and Slezkin, A., Feature selection based on swallow swarm optimization for fuzzy classification, Symmetry, 2019, vol. 11, no. 11, p. 1423. https://doi.org/10.3390/sym11111423

    Article  ADS  Google Scholar 

  33. Cui, Yu., Wu, D., and Huang, J., Optimize TSK fuzzy systems for classification problems: Minibatch gradient descent with uniform regularization and batch normalization, IEEE Trans. Fuzzy Syst., 2020, vol. 28, no. 12, pp. 3065–3075. https://doi.org/10.1109/tfuzz.2020.2967282

    Article  Google Scholar 

  34. Chang, X. and Lilly, J.H., Evolutionary design of a fuzzy classifier from data, IEEE Trans. Syst., Man Cybern., Part B (Cybern.), 2004, vol. 34, no. 4, pp. 1894–1906. https://doi.org/10.1109/tsmcb.2004.831160

    Article  Google Scholar 

  35. Li, J., Yang, L., Qu, Ya., and Sexton, G., An extended Takagi–Sugeno–Kang inference system (TSK+) with fuzzy interpolation and its rule base generation, Soft Comput., 2017, vol. 22, no. 10, pp. 3155–3170. https://doi.org/10.1007/s00500-017-2925-8

    Article  Google Scholar 

  36. Gao, Yu., Ma, C., and Wang, T., Fault diagnosis for cooling dehumidifier based on fuzzy classifier optimized by adaptive genetic algorithm, Heliyon, 2022, vol. 8, no. 12, p. e12057. https://doi.org/10.1016/j.heliyon.2022.e12057

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zahiri, S.-H. and Seyedin, S.-A., Using multi-objective particle swarm optimization for designing novel classifiers, Swarm Intelligence for Multi-Objective Problems in Data Mining, Coello, C.A.C., Dehuri, S., and Ghosh, S., Eds., Studies in Computational Intelligence, vol. 242, Berlin: Springer, 2009, pp. 65–92. https://doi.org/10.1007/978-3-642-03625-5_4

  38. Khodashinskii, I.A. and Sin’kov, D.S., Identification of fuzzy system parameters based on adaptive particle swarm algorithm, Inf. Tekhnol., 2011, no. 8, pp. 2–5.

  39. Khodashinskii, I.A. and Dudin, P.A., Fuzzy system identification based on direct ant colony algorithm, Iskusstvennyi Intellekt Prinyatie Reshenii, 2011, no. 3, pp. 26–33.

  40. Khodashinsky, I.A. and Dudin, P.A., Parametric fuzzy model identification based on a hybrid ant colony algorithm, Optoelectron., Instrum. Data Process., 2008, vol. 44, no. 5, pp. 402–411. https://doi.org/10.3103/S8756699008050038

    Article  Google Scholar 

  41. Castillo, O., Martínez-Marroquín, R., Melin, P., Valdez, F., and Soria, J., Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Inf. Sci., 2012, vol. 192, pp. 19–38. https://doi.org/10.1016/j.ins.2010.02.022

    Article  Google Scholar 

  42. Precup, R.-E., Sabau, M.-C., and Petriu, E.M., Nature-inspired optimal tuning of input membership functions of Takagi–Sugeno–Kang fuzzy models for anti-lock braking systems, Appl. Soft Comput., 2015, vol. 27, pp. 575–589. https://doi.org/10.1016/j.asoc.2014.07.004

    Article  Google Scholar 

  43. Nikolić, M., Šelmić, M., Macura, D., and Ćalić, J., Bee colony optimization metaheuristic for fuzzy membership functions tuning, Expert Syst. Appl., 2020, vol. 158, p. 113601. https://doi.org/10.1016/j.eswa.2020.113601

    Article  Google Scholar 

  44. Khodashinskii, I.A., Gorbunov, I.V., and Dudin, P.A., Ant and bee colony algorithms for training fuzzy systems, Dokl. Tomsk. Gos. Univ. Sistem Upr. Radioelektroniki, 2009, no. 2, pp. 157–161.

  45. Wolpert, D.H. and Macready, W.G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1997, vol. 1, no. 1, pp. 67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  46. Wolpert, D.H. and Macready, W.G., Coevolutionary free lunches, IEEE Trans. Evol. Comput., 2005, vol. 9, no. 6, pp. 721–735. https://doi.org/10.1109/tevc.2005.856205

    Article  Google Scholar 

  47. Saremi, S., Mirjalili, S., and Lewis, A., Grasshopper optimisation algorithm: Theory and application, Adv. Eng. Software, 2017, vol. 105, pp. 30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  48. Ostapenko, R.O. and Khodashinskii, I.A., Setting a rule base for a fuzzy classifier using the grasshopper optimization algorithm and the clustering algorithm, Dokl. Tomsk. Gos. Univ. Sistem Upr. Radioelektroniki, 2022, no. 2, pp. 31–36.

  49. Knowledge extraction based on evolutionary learning. http://www.keel.es. Cited August 1, 2023.

Download references

Funding

The study was supported by the Russian Science Foundation, grant No. 22-21-00021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. O. Ostapenko, I. A. Hodashinsky or Yu. A. Shurygin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. A. Solovyova

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapenko, R.O., Hodashinsky, I.A. & Shurygin, Y.A. Using the Grasshopper Optimization Algorithm for Fuzzy Classifier Design. Autom. Doc. Math. Linguist. 57, 333–349 (2023). https://doi.org/10.3103/S000510552306002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S000510552306002X

Keywords:

Navigation