Advertisement

The Methodological Basis of Ontological Documentary Information Modeling

  • N. V. Maksimov
Information Analysis

Abstract

This article discusses some ontological properties that determine the possibilities of structural representation and processing of the meaning of documentary information. The concept frameworks for constructing a typified taxonomy of objects and top-level ontology relationships are proposed on the basis of analyzing object lifecycle processes and using the functional cybernetic model of an elementary process.

Keywords

information modeling ontologies semantics text documents activity model concept framework general systems theory systems analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, P.P.-S., The entity-relation model, ACM TODS, 1976, no. 1.Google Scholar
  2. 2.
    Van Renssen, A., Gellish: A Generic Extensible Ontological Language, Delft: Delft University Press, 2005.Google Scholar
  3. 3.
    Agroskin, V., Levenchuk, A., and Golovkov, V., Ontology for engineering data, SUBD, 2013, no. 6.Google Scholar
  4. 4.
    Urmantsev, Yu.A., General theory of systems: State, applications, and development prospects, in Sb. “Sistema, Simmetriya, Garmoniya” (System, Symmetry, Harmony: Collection of Works), Moscow: Mysl’, 1988, pp. 38–124.Google Scholar
  5. 5.
    Shchedrovitskii, G.P., Problemy logiki nauchnogo issledovaniya i analiz struktury nauki: Iz arkhiva G.P. Shchedrovitskogo (Problems of the Logic of Scientific Research and Analysis of the Structure of Science: From the Archive of G.P. Shchedrovitsky), Moscow, 2004, vol. 7.Google Scholar
  6. 6.
    Hubka, V. and Eder, W.E., Theory of Technical Systems, Springer-Verlag, 1988.CrossRefGoogle Scholar
  7. 7.
    Gruber, Th., What Is an Ontology. http://www-ksl. stanford.edu/kst/what-is-an-ontology.html.Google Scholar
  8. 8.
    Guarino, N., Understanding, Building, and Using Ontologies. http://ksi.cpsc.ucalgary.ca/KAW/KAW96/ guarino/guarino.html.Google Scholar
  9. 9.
    Van Heijst, G. and Wielinga, B.J., Using Explicit Ontologies in KBS Development. http://ksi.cpsc.ucalgary. ca/KAW/KAW96/borst/nodel6.html.Google Scholar
  10. 10.
    Beniaminov, E.M. and Boldina, D.M., The knowledge representation system Ontolingua: Principles and prospects, Nauchno-Tekh. Inf., Ser. 2, 1999, no. 10, pp. 26–32.Google Scholar
  11. 11.
    De Roure, D., Jennings, N.R., and Shadbolt, N.R., The Semantic Grid: A Future e-Sciencelnfrastructure. http:// www.semanticgrid.org/documents/semgrid-journal/ semgrid-journal.pdf.Google Scholar
  12. 12.
    Golitsina, O.L., Kupriyanov, V.M., and Maksimov, N.V., Information and technological solutions applied for knowledge-management tasks, Sci. Tech. Inf. Process., 2015, vol. 42, no. 3, pp. 150–161.CrossRefGoogle Scholar
  13. 13.
    Maksimov, N.V., Information and knowledge: Nature and the conceptual model, Autom. Doc. Math. Linguist., 2010, vol. 44, no. 4, pp. 177–186.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Skorokhod'ko, E.F., Linguistic problems of text processing in automated information retrieval systems, Vopr. Inf. Teor. Prakt., 1974, no.25, pp. 5–120.Google Scholar
  15. 15.
    Bodyakin, V.I., The mechanism of automatic formation of the information model in the information-control system based on the neuro-semantic paradigm, Tr. konf. “Nelineinaya dinamika v kognitivnykh issledovaniyakh- 2011” (Proc. Conf. Nonlinear Dynamics in Cognitive Studies-2011), Nizhny Novgorod, 2011, pp. 16–19.Google Scholar
  16. 16.
    Shreider, Yu.A., Text as information model of knowledge, Analiz znakovykh sistem. Istoriya logiki i metodologii nauki. Tezisy dokl. 9-e Vseros. soveshch. (Khar’kov, okt. 1986) (Analysis of Symbolic Systems. History of Logic and Methodology of Science. Proc. 9th All-Russian Session (Kharkov, October 1986)), Kharkov: Naukova dumka, 1986, pp. 96–97.Google Scholar
  17. 17.
    Shtoff, V.A., Rol’ modelei v poznanii (The Role of Models in Cognition), Leningrad: LGU, 1963.Google Scholar
  18. 18.
    Kitamura, Y., Sano, T., Namba, K., and Mizoguchi, R., A functional concept ontology and its application to automatic identification of functional structures, Adv. Eng. Inf., 2002, vol. 16, no. 2, pp. 145–163.CrossRefGoogle Scholar
  19. 19.
    Johansson, I., et al., Functional anatomy: A taxonomic proposal, Acta Biotheor., 2005, vol. 53, no. 3, pp. 153–166.CrossRefGoogle Scholar
  20. 20.
    Maksimov, N.V., Okropishin, A.E., Okropishina, O.V., and Perederyaev, I.I., Use of technology of automated formation of the conceptual structure of the subject area of scientific research in scientific personnel management problems, Vestn. Ross. Gos. Gumanit. Univ., Ser. Upr., 2011, no. 4 (66), pp. 175–185.Google Scholar
  21. 21.
    Razumovskii, O.S., Ot konkurirovaniya k al’ternativam. Ekstremal’nye printsipy i problema edinstva nauchnogo znaniya (From Competition to Alternatives. Extreme Principles and the Problem of Scientific Knowledge Unity), Novosibirsk: Nauka, 1983.Google Scholar
  22. 22.
    Penrose, R., Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford University Press, 1994.zbMATHGoogle Scholar
  23. 23.
    Yablonskii, A.I., Models and methods of science research, in Filosofy Rossii XX veka (Philosophers of Russia of the 20th Century), Moscow: Editorial URSS, 2001.Google Scholar
  24. 24.
    Naumova, N.F., Tselepolaganie kak sistemnyi protsess (Goal Setting as a System Process), Moscow: VNIISI, 1982.Google Scholar
  25. 25.
    Kitamura, Y., et al., An ontology-based annotation framework for representing the functionality of engineering devices, Proc. of ASME IDETC/CIE 2006, 2006.Google Scholar
  26. 26.
    Kozaki, K., Sunagawa, E., Kitamura, Y., and Mizoguchi, R., Role representation model using OWL and SWRL, Roles'07. Proceedings of the 2nd Workshop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and Ontologies, Berlin, 2007, pp. 39–46.Google Scholar
  27. 27.
    Mizoguchi, R., Sunagawa, E., Kozaki, K., and Kitamura, Y., A model of roles within an ontology develop ment tool: Hozo, J. Appl. Ontol., 2007, vol.2, no. 2, pp. 159–179.Google Scholar
  28. 28.
    Golitsyna, O.L., Maksimov, N.V., Okropishina, O.V., and Strogonov, V.I., The ontological approach to the identification of information in tasks of document retrieval, Autom. Doc. Math. Linguist., 2012, vol. 46, no. 3, pp. 125–132.CrossRefGoogle Scholar
  29. 29.
    Nirenburg, S. and Raskin, V., Ontological Semantics, Cambridge, 2004.Google Scholar
  30. 30.
    Smith, B., Against ideosyncrasy in ontology development, in Formal Ontology and Information System, Bennet, B. and Fellbaum, C., Amsterdam: IOS Press, 2006, pp. 15–26.Google Scholar
  31. 31.
    Golitsyna, O.L., Maksimov, N.V., and Fedorova, V.A., On determining semantic similarity based on relationships of a combined thesaurus, Autom. Doc. Math. Linguist., 2016, no. 6, pp. 30–44.Google Scholar
  32. 32.
    Borshchev, V.B. and Khomyakov, M.V., On the information equivalence of databases, Nauchno-Tekh. Inf., Ser. 2, 1979, no. 7, pp. 14–21.zbMATHGoogle Scholar
  33. 33.
    Panova, N.S. and Shreider, Yu.A., The duality principle in classification theory, Nauchno-Tekh. Inf., Ser. 2, 1975, no. 10, pp. 3–10.Google Scholar
  34. 34.
    Kulinich, A.A., Conceptual frameworks of ontologies for ill-structured problem domains, Sci. Tech. Inf. Process., 2015, vol. 42, no. 6, pp. 411–419.CrossRefGoogle Scholar
  35. 35.
    Sowa, J.F., Ontology. http://www.jfsowa.com/ontology/.Google Scholar
  36. 36.
    Ryle, G., The Concept of Mind, University of Chicago Press, 1949.Google Scholar
  37. 37.
    Omel'chenko, V.V., Osnovy sistematizatsii (Fundamentals of Systematization), Moscow: KD LIBROKOM, 2012.Google Scholar
  38. 38.
    Raibekas, A.Ya., Veshch’, svoistvo, otnoshenie kak filosofskie kategorii (Thing, Property, and Relation as Philosophical Categories), Tomsk: Izd. Tomsk. Univ., 1977.Google Scholar
  39. 39.
    Mizoguchi, R., Yet another top-level ontology: Yato, Proc. of the Second Interdisciplinary Ontology Meeting, 2009, pp. 91–101.Google Scholar
  40. 40.
    Henrichs, M.A., Conceptual framework for constructing distributed object libraries using Gellish, Master’s Thesis (Comput. Sci.), Delft University of Technology, 2009.Google Scholar
  41. 41.
    Borgo, S., Franssen, M., Garbacz, P., Kitamura, Y., Mizoguchi, R., and Vermaas, P.E., Technical artifacts: An integrated perspective, Appl. Ontol., 2014, no. 9, pp. 217–235.Google Scholar
  42. 42.
    Mizoguchi, R. and Kitamura, Y., A functional ontology of artifacts, The Monist, 2009, vol. 92, no. 3, pp. 387–402.CrossRefGoogle Scholar
  43. 43.
    Bennett, B., Space, time, matter and things, ACM. Proceedings of the International Conference on Formal Ontology in Information Systems, 2001, vol. 2001, pp. 105–116.Google Scholar
  44. 44.
    Smith, B., Fiat objects, Topoi, 2001, no. 20 (2), pp. 131–148.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Smith, B. and Varzi, A.C., Fiat and bona fide boundaries, Philos. Phenomenol. Res., 2000, vol. 60, pp. 401–420.CrossRefGoogle Scholar
  46. 46.
    Smith, B. and Grenon, P., The cornucopia of formalontological relations, Dialectica, 2004, vol. 58, no. 3, pp. 279–296.CrossRefGoogle Scholar
  47. 47.
    Greimas, A.-Zh., Reflections on actant models, in Frantsuzskaya semiotika: Ot strukturalizma k poststrukturalizmu (French Semiotics: From Structuralism to Poststructuralism), Moscow, 2000, pp. 153–170.Google Scholar
  48. 48.
    Apresyan, Yu.D., Fundamental classification of predicates, in Yazykovaya kartina mira i sistemnaya leksikografiya (The Language Picture of the World and Systemic Lexicography), Moscow: Yazyki slavyanskikh kul’tur, 2006, pp. 76–110.Google Scholar
  49. 49.
    Vasil'ev, L.M., Teoreticheskie problemy obshchei lingvistiki, slavistiki, rusistiki: Sbornik izbrannykh statei (Theoretical Problems of General Linguistics, Slavic and Russian Studies: Collection of Selected Papers), Ufa: RIO BashGU, 2006, pp. 171–175.Google Scholar
  50. 50.
    Kitamura, Y. and Mizoguchi, R., Ontology-based systematization of functional knowledge, J. Eng. Des., 2004, vol. 15, no. 4, pp. 327–351.CrossRefGoogle Scholar
  51. 51.
    Kitamura, Y., Koji, Y., and Mizoguchi, R., An ontological model of device function: Industrial deployment and lessons learned, J. Appl. Ontol., 2006, vol. 1, nos. 3–4, pp. 237–262.Google Scholar
  52. 52.
    Wood, K.L., et al., A functional basis for engineering design: Reconciling and evolving previous efforts, Res. Eng. Des., 2002, vol. 13, no. 2, pp. 65–82.MathSciNetCrossRefGoogle Scholar
  53. 53.
    GOST (State Standard) 34.003-90: Information Technology. Set of Standards for Automated Systems. Automated Systems. Terms and Definitions, 2009.Google Scholar
  54. 54.
    Golitsyna, O.L., Maksimov, N.V., Okropishina, O.V., and Strogonov, V.I., An ontological approach to information identification in tasks of document retrieval: A practical application, Autom. Doc. Math. Linguist., 2013, vol. 47, no. 2, pp. 45–51.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.National Research Nuclear University Moscow Engineering Physics Institute (MEPhI)MoscowRussia

Personalised recommendations