Advertisement

Analysis of Spaces of Similarity Generated by a Fact Base in JSM Problems

  • S. M. Gusakova
Intelligent Systems
  • 8 Downloads

Abstract

In this paper, we investigate spaces of similarity generated by fact bases of intelligent JSM systems and present a classification for the set of potential hypotheses. Conditions on similarity spaces are imposed to reduce the number of classes in this classification. The results obtained in this work make it possible to estimate the set of hypotheses (including minimal ones) found by inductive reasoning and can be used to solve the problems of opinion analysis and formation of a social structure.

Keywords

intelligent JSM system social structure similarity space kernel closed set likeness of similarity spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikheenkova, M.A. and Volkova, A.Yu., Specification of the JSM intelligent system, Autom. Doc. Math. Linguist., 2013, vol. 47, no. 4, pp. 135–150.CrossRefGoogle Scholar
  2. 2.
    Finn, V.K., Epistemological foundations of the JSM method for automatic hypothesis generation, Autom. Doc. Math. Linguist., 2014, vol. 48, no. 2, pp. 96–148.CrossRefGoogle Scholar
  3. 3.
    Gusakova, S.M., Mikheenkova, M.A., and Finn, V.K., On the logical means of automated analysis of opinions, in Avtomaticheskoe porozhdenie gipotez v intellektual’nykh sistemakh (Automatic Hypothesis Generation in Intelligent Systems), Finn, V.K., Ed., Moscow: Knizhnyi dom Librokom, 2009, pp. 446–484.Google Scholar
  4. 4.
    Mikheenkova, M.A., Formal means of intellectual systems for the study of social structure, Trudy Shestoi mezhdunarodnoi konferentsii “Sistemnyi analiz i informatsionnye tekhnologii” SAIT-2015 (Proc. Sixth Int. Conf. System Analysis and Information Technologies SAIT-2015), 2015, pp. 191–196.Google Scholar
  5. 5.
    Gusakova, S.M. and Mikheyenkova, M.A., Knowledge discovery as a tool for the formation of the structure of society, Autom. Doc. Math. Linguist., 2016, vol. 50, no. 5, pp. 179–188.CrossRefGoogle Scholar
  6. 6.
    Gusakova, S.M. and Finn, V.K., On new means of formalizing the concept of local and global similarities, Nauchno-Tekh. Inf., Ser. 2, 1987, no. 10, pp. 14–22.Google Scholar
  7. 7.
    Rige, Zh., Binary relations, closures, and Galois correspondences, Kibern. Sb., 1963, no. 7, pp. 129–185.Google Scholar
  8. 8.
    Ochan, Yu.S., Some questions of the equivalence of families of sets, Izv. Akad. Nauk SSSR, Ser. Mat., 1942, no. 6, pp. 171–188.MathSciNetGoogle Scholar
  9. 9.
    Shreider, Yu.A., Ravenstvo, skhodstvo, poryadok (Equality, Similarity, and Order), Moscow: Nauka, 1971.Google Scholar
  10. 10.
    Gusakova, S.M., Formalization of the concept of similarity and its application in intellectual systems, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: VINITI RAN, 1988.Google Scholar
  11. 11.
    Gusakova, S.M., Investigation of similarity spaces in intelligent JSM-systems, Materialy X-oi Vserossiiskoi mul’tikonferentsii po problemam upravleniya “MKPU-2017” (Divnomorskoe, Gelendzhik) (Proc. Xth All-Russian Multiconference on the Problems of Control MKPU-2017 (Divnomorskoe, Gelendzhik)), 2017, vol. 1, pp. 54–55.Google Scholar
  12. 12.
    Roberts, F. and Spenser, I., Characterization of clique graphs, J. Comb. Theory, 1971, no. 10, pp. 102–108.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yakubovich (Gusakova), S.M., On the properties of conjugate spaces of tolerance, Inf. Vopr. Semiotiki Lingvist. Avtom. Perevoda, 1971, vol. 1, pp. 116–123.Google Scholar
  14. 14.
    Helly, E., Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Dtsch. Math. Ver., 1923, no. 32, pp. 175–176.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Federal Research Center Computer Science and ControlRussian Academy of SciencesMoscowRussia

Personalised recommendations