Advertisement

An information model of light quantization

  • N. V. Serov
Article
  • 18 Downloads

Abstract

This paper presents the basic ideas and concepts for the development of information models of optical objects. Quantitative ratios among regularities in trigonometric spectral analysis as a possible connection between the projection of natural (point-source) radiator and absorbing atomic section are shown. This approach has been applied to the correlation between these patterns and atomic spectroscopy (specifically, terms and ionization potentials of neutral atoms with s and p shells. This has made it possible to build information models of radiation and atomic absorption on certain principles of field continuum quantization.

Keywords

information models of radiation and absorption optical octaves trigonometric projections ionization potentials atomic terms continuum quantization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klyshko, D.N., Quantum optics: Quantum, classical, and metaphysical aspects, Usp. Fiz. Nauk, 1994, vol. 164, no. 11, pp. 1187–1214.CrossRefGoogle Scholar
  2. 2.
    Meshkov, V.V., Osnovy svetotekhniki (Basics of Lighting Technology), Moscow: Energiya, 1979, part 1.Google Scholar
  3. 3.
    Khodanovich, A.I., Sorokina, I.V., and Sokolov, D.A., Optical-mechanical analogy, Sovrem. Probl. Nauki Obraz., 2015, no. 5. http://www.science-education.ru/125-r20101.Google Scholar
  4. 4.
    El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), Moscow: Editorial URSS, 2001.Google Scholar
  5. 5.
    International Lighting Vocabulary, Publication CIE, 1970.Google Scholar
  6. 6.
    Informatika (Informatics), Simonovich, S.V. et al., St. Petersburg: Piter, 2000.Google Scholar
  7. 7.
    Wittgenstein, L., Remarks on Colour, Berkeley: University of California Press, 1977.Google Scholar
  8. 8.
    Petersen, A., The philosophy of Niels Bohr, in Niels Bohr. A Centenary Volume, French, A.P. and Kennedy, P.J., Eds., Harvard: Harvard University Press, 1985, pp. 299–310.Google Scholar
  9. 9.
    Timpson, C., Information, Immaterialism, Instrumentalism: Old and New in Quantum Information, 2007. http://users.ox.ac.uk/~bras2317/iii_2.pdf.zbMATHGoogle Scholar
  10. 10.
    Mamchur, E.A., The information-theoretical turn in the interpretation of quantum mechanics, Vopr. Filos., 2014, no. 1, pp. 57–71.Google Scholar
  11. 11.
    Serov, N.V., Data definition by color, Autom. Doc. Math. Linguist., 2001, vol. 35, no. 6, pp. 36–38.Google Scholar
  12. 12.
    Huntley, H.E., Dimensional Analysis, New York: Dover Publ., Inc., 1967.zbMATHGoogle Scholar
  13. 13.
    Rautian, S.G. and Yatsenko, A.S., Grotrian diagrams, Usp. Fiz. Nauk, 1999, vol. 169, no. 2, pp. 217–220.CrossRefGoogle Scholar
  14. 14.
    Schmidt, W., Optical Spectroscopy in Chemistry and Life Sciences, Weinheim: WILEY-VCH Verlag GmbH & Co, 2005.Google Scholar
  15. 15.
    Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.Google Scholar
  16. 16.
    Striganov, A.R. and Sventitskii, N.S., Tablitsy spektral’nykh linii (Tables of Spectral Lines), Moscow: Atomizdat, 1966.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Rozhdestvenskii Optical SocietySt. PetersburgRussia

Personalised recommendations