Selection of an algorithm for the parallel implementation of the similarity method in intelligent DSM systems

Article

Abstract

The principle of selecting adequate algorithms for the parallel implementation of the similarity method in the DSM system problem solver is described. The most advanced family of algorithms for parallel modifications is identified and its different representatives are considered. A number of algorithms and their parallel versions in C++ are experimentally implemented for overall optimization. The experimental results are used in assessing the paralleling method, and further advancements and lines of research are provided.

Keywords

formal concept analysis DSM problem solver parallel computing 

References

  1. 1.
    Finn, V.K., Inductive methods of J.S. Mill in artificial intelligence systems. Part I, Iskusstv. Intell. Prinyat. Reshenii, 2010, no. 3, pp. 3–21.Google Scholar
  2. 2.
    Finn, V.K., Inductive methods of J.S. Mill in artificial intelligence systems. Part II, Iskusstv. Intell. Prinyat. Reshenii, 2010, no. 3, pp. 14–40.Google Scholar
  3. 3.
    Finn, V.K., On determination of empirical regularities using the JSM-automatic method for generation of hypotheses, Iskusstv. Intell. Prinyat. Reshenii, 2010, no. 4.Google Scholar
  4. 4.
    Anshakov, O.M., The JSM method: A set-theoretical explanation, Autom. Doc. Math. Linguist., 2012, vol. 46, no. 5, pp. 202–220.CrossRefGoogle Scholar
  5. 5.
    Kuznetsov, S.O. and Obiedkov, S.A., Comparing performance of algorithms for generating concept lattices, J. Exp. Theor. Artif. Intell., 2002, vol. 14, no. 2–3, pp. 189–216.MATHCrossRefGoogle Scholar
  6. 6.
    Norris, E.M., An algorithm for computing the maximal rectangles in a binary relation, Revue Roumaine de Mathematiques Pures et Appliquees, 1978, no. 23(2), pp. 243–250.MATHMathSciNetGoogle Scholar
  7. 7.
    Ganter, B. and Wille, R., Formal Concept Analysis: Mathematical Foundations, Berlin: Springer-Verlag, 1999.MATHCrossRefGoogle Scholar
  8. 8.
    Chein, M., Algorithme de recherche des sous-matrices premieres d’une matrice, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 1969, vol. 13, pp. 21–25.MathSciNetGoogle Scholar
  9. 9.
    Bordat, J.P., Calcul pratique du treillis de Galois d’une correspondence, Math. Sci. Hum., 1986, vol. 96, pp. 31–47.MATHMathSciNetGoogle Scholar
  10. 10.
    Troy, A.D., Faster concept analysis, Proc. 15th Int. Conf. on Conceptual Structures (ICCS), 2007.Google Scholar
  11. 11.
    Sutter, H., The free lunch is over–A fundamental turn toward concurrency in software, Dr. Dobb’s J., 2005, vol. 30.Google Scholar
  12. 12.
    Krajca, P., Outrata, J., and Vychodil, V., Parallel recursive algorithm for FCA, Proc. CLA CEUR WS 433, 2008, pp. 71–82.Google Scholar
  13. 13.
    Krajca, P., Outrata, J., and Vychodil, V., Advances in algorithms based on CbO, Proc. CLA, 2010, pp. 325–337.Google Scholar
  14. 14.
    Andrews, S., A 'Best-of-Breed’ approach for designing a fast algorithm for computing fixpoints of galois connections, Inf. Sci., 2015, pp. 633–649.Google Scholar
  15. 15.
    Andrews, S., In-Close, a fast algorithm for computing formal concepts, Suppl. Proc. ICCS'09 CEUR WS 483, 2009.Google Scholar
  16. 16.
    Outrata J., Vychodil V. Fast algorithm for computing fixpoints of Galois connections induced by objectattribute relational data, Inf. Sci., 2012, pp. 114–127.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.All-Russian Institute of Scientific and Technical InformationRussian Academy of SciencesMoscowRussia

Personalised recommendations