Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optimization methods in multi-criteria decision making analysis with interval information on the importance of criteria and values of scale gradations

  • 56 Accesses

  • 2 Citations

Abstract

Accurate and efficient numerical methods for the solution of optimization problems that arise in the comparison of solution preferences with the methods of the theory of criteria importance in the case of interval estimates of degrees of superiority of certain criteria over others, as well as in the case of interval restrictions on the growth of preferences along the criteria range, are suggested.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Larichev, O.I., Teoriya i metody prinyatiya reshenii (Theory and Methods of Decision Making), Moscow: Logos, 2006, 3rd ed.

  2. 2.

    Keeney, R.L. and Raiffa, H., Decision Making with Multiple Objectives Preferences and Value Tradeoffs, New York: Wiley, 1976.

  3. 3.

    Steuer, R., Multicriteria Optimization. Theory, Computation and Application, New York: Wiley, 1986.

  4. 4.

    Podinovski, V.V., Quantitative Importance of Criteria, Automation and Remote Control, 2000, no. 5, part 2, pp. 817–828.

  5. 5.

    Podinovski, V.V., The Quantitative Importance of Criteria for MCDA, JMCDA, 2002, vol. 11, pp. 1–15.

  6. 6.

    Podinovski, V.V., On the Use of Importance Information in MCDA Problems with Criteria Measured on the First Ordered Metric Scale, JMCDA, 2009, vol. 15, pp. 163–174.

  7. 7.

    Podinovski, V.V., Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterial’nykh zadachakh prinyatiya reshenii (Introduction into the Theory of Criteria Importance in Multi-Criteria Problems of Decision Making), Moscow: Fizmatlit, 2007.

  8. 8.

    Edwards, W. and Barron, F.H., SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement, Organization Behaviour and Human Processes, 1994, vol. 60, pp. 306–325.

  9. 9.

    Podinovski, V.V., Interval Estimates of Criteria Importance in Multi-Criteria Optimization, ITMU, 2006, vol. 33, no.8, pp. 975–979.

  10. 10.

    Podinovski, V.V., Interval Estimates of Criteria Importance in Multi-Criteria Choice, SUIT, 2007, vol. 27, no. 1, pp. 22–26.

  11. 11.

    Podinovski, V.V., Interval Information on Criteria Importance in Multi-Criteria Decision Making Analysis, Nauchno-Tech. Inf., Ser. 2, 2007, vol. 6, pp. 15–18.

  12. 12.

    Nelyubin, A.P. and Podinovski, V.V., Bilinear Optimization in the Analysis of Multicriteria Problems using Criteria Importance Theory under Inexact Information about Preferences, Computational Mathematics and Mathematical Physics, 2011, vol. 5, no. 5, pp. 751–761.

  13. 13.

    Podinovski, V.V., Decision under Multiple Estimates for the Importance Coefficients of Criteria and Probabilities of Values of Uncertain Factors in the Aim Function, Automation and Remote Control, 2004, vol. 65, no. 11, pp. 1817–1833.

  14. 14.

    Steuer, R.E., Multiple Objective Linear Programming with Interval Criteria Weighs, Management Science, 1986, vol. 23, pp. 305–316.

  15. 15.

    Carrizosa, E., Conde, E., Fernandez, F.R. and Puerto, J., Multicriteria Analysis with Partial Information about Weighting Coefficients, European Journal of Operational Research, 1995, vol. 82, pp. 291–301.

  16. 16.

    Marmol, A.M., Puerto, J. and Fernandez, F.R., The Use of Partial Information on Weighs in Multicriteria Decision Problems, JMCDA, 1998, vol. 7, pp. 322-329.

  17. 17.

    Weber, M.A., A Method of Multiattribute Decision Making with Incomplete Information, Manage. Sci., 1985, vol. 31, pp. 1365–1371.

  18. 18.

    Belton, V. and Stewart, T.J., Multiple Criteria Decision Analysis. An Integrated Approach, Boston: Kluwer, 2003.

  19. 19.

    Krantz, D.H., Luce, R.D., Suppes, P. and Tverski, A., Foundation of Measurement, New York: Academic Press, 1971, vol. 1.

  20. 20.

    Podinovski, V.V. and Nelyubin, A.P., Multi-Criteria Decision Rules for Interval Information on Criteria Importance or their Ranges, Materialy 37-i Mezhdunarodnoi konferentsii “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese” (Proc. 37th Int. Conference on Information Technologies in Science, Education, Telecommunication and Business), 2010, pp. 153–154.

  21. 21.

    Fishburn, P.C., Decision and Value Theory, New York: Wiley, 1964.

  22. 22.

    Burbaki, N., Obshchaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva (General Topology. Topological groups. Numbers and groups and spaces connected with them), Moscow: Fizmatlit, 1969.

  23. 23.

    Podinovski, V.V. and Potapov, M.A., Theoretical Basics and Systems of Multi-Criteria Decision Making Support, Materialy 34-i Mezhdunarodnoi konferentsii “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese” (Proc. 34th Int. Conf. on Information Technologies in Science, Education, Telecommunication and Business), 2007, pp. 87–89.

  24. 24.

    Podinovski, V.V., Analysis of Multicriteria Choice Problems by Methods of the Theory of Criteria Importance, Based on Computer Systems of Decision Making Support, Journal of Computer and System Sciences International, 2008, vol. 47, no. 2, pp. 221–225.

Download references

Author information

Correspondence to A. P. Nelyubin.

Additional information

Original Russian Text © A.P. Nelyubin, V.V. Podinovski, 2011, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2, 2011, No. 8, pp. 22–29.

About this article

Cite this article

Nelyubin, A.P., Podinovski, V.V. Optimization methods in multi-criteria decision making analysis with interval information on the importance of criteria and values of scale gradations. Autom. Doc. Math. Linguist. 45, 202 (2011). https://doi.org/10.3103/S000510551104008X

Download citation

Keywords

  • multi-criteria decision making
  • criteria importance theory
  • uncertainty of coefficients of criteria importance and values of scale gradations
  • interval estimates
  • additive value function