Advertisement

Computer-support capabilities for qualitative research in sociology

  • M. A. Mikheenkova
Article
  • 108 Downloads

Abstract

The process of development of approaches to the qualitative analysis of social data from a qualitative analysis of the use of computer tools is reviewed in this paper. Its development means a transfer from simple computer processing of data to modern intellectual data analysis.

Keywords

qualitative analysis of social data quantitative analysis of social data qualitative comparative analysis data mining data mining in sociology 

References

  1. 1.
    Yadov, V.A., Strategiya sotsiologicheskogo issledovaniya (Strategy of Social Research), Moscow: Dobrosvet, 2003.Google Scholar
  2. 2.
    Mill’, D.S., Sistema logiki sillogisticheskoi i induktivnoi (System of Syllogistic and Inductive Logic), Moscow: LENAND, 2011.Google Scholar
  3. 3.
    Dyurkgeim, E., Sotsiologiya. Ee predmet, metod, prednaznachenie (Sociology. Its Subject, Method, and Purpose), Moscow: Kanon, 1995.Google Scholar
  4. 4.
    Tatarova, G.G., Metodologiya analiza dannykh v sotsiologii (Methodology of Data and Sociology Analysis), Moscow: Strategiya, 1998.Google Scholar
  5. 5.
    Batygin, G.S., Lektsii po metodologii sotsiologicheskikh issledovanii (Lectures on Methodology of Social Researches), Moscow: RUDN, 2008.Google Scholar
  6. 6.
    Kryshtanovskii, A.O., Analiz sotsiologicheskikh dannykh (Social Data Mining), Moscow: Izdatel’skii dom GU VShE, 2006.Google Scholar
  7. 7.
    Devyatko, I.F., Metody sotsiologicheskogo issledovaniya (Social Research Methods), Moscow: KDU, 2003.Google Scholar
  8. 8.
    Veber, M., Izbrannoe: protestantskaya etika i dukh kapitalizma (Selectas: Protestant Ethic and Capitalism Spirit), Moscow: ROSSPEN, 2006.Google Scholar
  9. 9.
    Shils, E.A., Foreword, Weber, M., The Methodology of the Social Sciences, IL: The Free Press of Glencoe, 1949.Google Scholar
  10. 10.
    Sorokin, P., Quantophrenny, in Sotsiologiya: Khrestomatiya dlya vuzov (Sociology: Reading-Book for Higher Education Institutions), comp. by Kravchenko A.I.), Moscow: Akademicheskii proekt, 2002.Google Scholar
  11. 11.
    Guts, A.K. and Frolova, Yu.V., Matematicheskie metody v sotsiologii (Mathematical Methods in Sociology), Moscow: Izd-vo LKI, 2007.Google Scholar
  12. 12.
    Tolstova, Yu.N. and Maslennikov, E.V., Qualitative and Quantitative Strategies, Empirical Research as Measurement in a General Sense, Soc. Res., 2000, no. 9, pp. 101–109.Google Scholar
  13. 13.
    Samylovskii, A.I., About Mathematics of Behavior Research, in Matematicheskoe modelirovanie sotsial’nykh protsessov (Mathematical Modeling of Social Processes), Moscow: KD Univ., 2009.Google Scholar
  14. 14.
    Gotlib, A.S., Vvedenie v sotsiologicheskoe issledovanie (Kachestvennyi i kolichestvennyi podkhody) (Introduction to Social Research (Qualitative and Quantitative Approches)), Moscow: Flinta, 2005.Google Scholar
  15. 15.
    Vrigt, G.Kh., fon., Explanation and understanding, in Logiko-filosofskie issledovaniya (Logic-Philosophic Researches), Moscow: Progress, 1986, pp. 35–241.Google Scholar
  16. 16.
    Gobo, G., The Renaissance of Qualitative Methods, FQS Forum: Qual. Soc. Res., 2005, vol. 6, no. 3, ch. 42.Google Scholar
  17. 17.
    Popper, K., Logic of Social Sciences, in Evolyutsionnaya epistemologiya i logika sotsial’nykh nauk (Evolutionary Epistemology and Logic of Social Sciences), Moscow: Editorial URSS, 2000.Google Scholar
  18. 18.
    Parsons, T.O., O strukture sotsial’nogo deistviya (About the Structure of Social Effect), Moscow: Akademicheskii proekt, 2000.Google Scholar
  19. 19.
    Glaser, B. and Strauss, A., The Discovery of Grounded Theory: Strategies for Qualitative Research, New York: Aldine de Gruyter, 1967.Google Scholar
  20. 20.
    Strauss, A. and Korbin, Dzh., Osnovy Kachestvennogo issledovaniya. Obosnovannaya teoriya. Protsedury i tekhniki (Bases of the Qualitative Research. Grounded Theory. Procedures and Techniques), Moscow: KomKniga, 2007.Google Scholar
  21. 21.
    Kanygin, G.V., Context-Aimed Conceptualization of Research Concepts, Soc. J., 2007, no. 3, pp. 60–80.Google Scholar
  22. 22.
    Kelle, U., “Emergence” vs. “Forcing” of Empirical Data? A Crucial Problems of “Grounded Theory” Reconsidered, FQS Forum: Qual. Soc. Res., 2005, vol. 6, no. 2, p. 27.Google Scholar
  23. 23.
    Glaser, B., Emergence Vs. Forcing: Basics of Grounded Theory Analysis, Mill Valley: Soc. Press, 1992.Google Scholar
  24. 24.
    Kempbell, D., Qualitative Knowledge in Researched Effects, in Modeli Eksperimentov v Sotsial’noi Psikhologii i Prikladnykh Issledovaniyakh (Models of Experiments in Social Psychology and Applied Researches), Moscow: Progress, 1980.Google Scholar
  25. 25.
    Shteinberg, I., Shanin, T., Kovalev, E., and Levinson, A., Kachestvennye metody. Polevye sotsiologicheskie issledovaniya (Qualitative Methods. Field Social Researches), St. Petersburg: Aleteiya, 2009.Google Scholar
  26. 26.
    Hesse-Biber, S.N., Mixed Method Research: Merging Theory with Practice, New York: The Guilford Press, 2010.Google Scholar
  27. 27.
    Kelle, U., Sociological Explanations Between Micro and Macro and the Integration of Qualitative and Quantitative Methods, FQS Forum: Qualitative Soc. Res., 2001, vol. 2, no. 1, ch. 5.Google Scholar
  28. 28.
    Bazeley, P., Issues in Mixing Qualitative and Quantitative Approaches To Research, in Applying Qualitative Methods To Marketing Management Research, Buber, R., Gadner, J. and Richards, L., Eds., UK: Palgrave Macmillan, 2004, pp. 141–156.Google Scholar
  29. 29.
    Smelzer, N.Dzh., On Comparative Analysis, Interdisciplinarity and Internationalization in Sociology, Soc. Res., 2004, no. 11, pp. 3–12.Google Scholar
  30. 30.
    Davydov, A.A., Fatal Error of Sociology. http://ecsocman.edu.ru/rubezh/msg/28973359.html.
  31. 31.
    Batygin, G.S. and Devyatko, I.F., Myth on Qualitative Sociology, Soc. J., 1994, no. 2, pp. 28–42.Google Scholar
  32. 32.
    Frost, N., Nolas, S.-M., Brooks-Gordon, B., et al., Pluralism in Qualitative Research: the Impact of Different Researchers and Qualitative Approaches on the Analysis of Qualitative Data, Qual. Res., 2010, vol. 10, no. 4, pp. 1–20.CrossRefGoogle Scholar
  33. 33.
    Kelle, U., An Overview of Computer-Aided Methods in Qualitative Research, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle, U., Ed., London: Sage Publication, 1998, pp. 1–18.Google Scholar
  34. 34.
    Fielding, N.G., Automating the Ineffable: Qualitative Software and the Meaning of Qualitative Research, in Qualitative Research in Action, May, T., Ed., London: Sage Publication, 2003, pp. 161–178.Google Scholar
  35. 35.
    Kelle, U. and Laurie, H., Computer Use in Qualitative Research and Issues of Validity, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle. U., Ed., London: Sage Publication, 1998, pp. 19–28.Google Scholar
  36. 36.
    Anderson-Gough, F., Using Computer Assisted Qualitative Data Analysis Software: Respecting Voices within Data Management and Analysis, in The Real Life Guide To Accounting Research: A Behind-The-Scenes View of Using Qualitative Research Methods, Humphrey, C. and Lee, B., Eds., Amsterdam: Elsevier, 2004, pp. 373–400.Google Scholar
  37. 37.
    Lewins, A. and Silver, C., Using Software in Qualitative Research: A Step by Step Guide, London: Sage Publications, 2007.Google Scholar
  38. 38.
    Berger, R., Review: “Using Software in Qualitative Research: A Step-By-Step Guide” (Lewins & Silver 2007), Forum: Qualitative Soc. Res., 2009, vol. 10, no. 1, ch. 23.Google Scholar
  39. 39.
    Hesse-Biber, S.N. and Dupuis, P., Hypothesis Testing in Computer-Aided Qualitative Data Analysis, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle, U., Ed., London: Sage Publication, 1998, pp. 129–135.Google Scholar
  40. 40.
    Shelly, A. and Sibert, E., Using Logic Programming to Facilitate Qualitative Data Analysis, Qual. Soc., 1986, vol. 9, no.2, pp. 145–161.CrossRefGoogle Scholar
  41. 41.
    Sibert, E. and Shelly, A., Logic Programming for Hypothesis Generation and Refinement, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle, U., Ed., London: Sage Publication, 1998, pp. 113–128.Google Scholar
  42. 42.
    Huber, G.L. and García, C.M., Computer Assistance for Testing Hypotheses About Qualitative Data: The Software Package AQUAD, Qual. Soc., 1991, vol. 14, no. 4, pp. 325–347.CrossRefGoogle Scholar
  43. 43.
    Huber, G.L., Qualitative Hypothesis Examination and Theory Building, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle, U., Ed., London: Sage Publication, 1998, pp. 136-150.Google Scholar
  44. 44.
    Fielding, N.G. and Cisneros-Puebla, C.A., CAQDAS-GIS Convergence Toward a New Integrated Mixed Method Research Practice? J. Mixed Methods Res., 2009, vol. 3, no. 4, pp. 349–370.CrossRefGoogle Scholar
  45. 45.
    De Gregorio, E. and Arcidiacono, F., Computer-Assisted Analysis in the Social Sciences: A Unique Strategy for Mixed Research? Int. J. Multiple Res. Approaches, 2008, vol. 2, no. 1, pp. 31–35.Google Scholar
  46. 46.
    García-Alvarez, E. and Lóez-Sintas, J., Contingency Table: A Two-Way Bridge Between Qualitative and Quantitative Methods, Field Methods, 2002, vol. 14, no. 3, pp. 270–287.CrossRefGoogle Scholar
  47. 47.
    Kuckartz U., Realizing Mixed-Methods Approaches with MAXQDA. www.methoden-evaluation.de.
  48. 48.
    Kuckartz, U., Case-Oriented Quantification, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle, U., Ed., London: Sage Publication, 1998, pp. 158–166.Google Scholar
  49. 49.
    Humble, A.M., Technique Triangulation for Validation in Directed Content Analysis, Int. J. Qual. Methods, 2009, vol. 8, no. 3, pp. 34–51.Google Scholar
  50. 50.
    Brent, E. and Slusarz, P., “Feeling the Beat”: Intelligent Coding Advice from Metaknowledge in Qualitative Research, Soc. Sci. Comp. Rev., 2003, vol. 21, no. 3, pp. 281–303.CrossRefGoogle Scholar
  51. 51.
  52. 52.
    Lonkila, M., Grounded Theory As an Emerging Paradigm for Computer-Assisted Qualitative Data Analysis, in Computer-Aided Qualitative Data Analysis: Theory, Methods and Practice, Kelle, U., Ed. London: Sage Publication, 1998, pp. 41–51.Google Scholar
  53. 53.
    Bringer, J.D., Johnston, L.H., and Brackenridge, C.H., Using Computer-Assisted Qualitative Data Analysis Software To Develop a Grounded Theory Project, Field Methods, 2006, vol. 18, no. 3, pp. 245–266.CrossRefGoogle Scholar
  54. 54.
    Lu Chi-Jung and Shulman S.W., Rigor and Flexibility in Computer-based Qualitative Research: Introducing the Coding Analysis Toolkit, Int. J. Mutl. Res. Approaches, 2008, vol. 2, no. 1, pp. 105–117.Google Scholar
  55. 55.
    Ganter, B. and Wille, R., Formal Concept Analysis: Mathematical Foundations, Berlin: Springer, 1999.zbMATHGoogle Scholar
  56. 56.
    Freeman, L.C., Cliques, Galois Lattices, and the Structure of Human Social Groups, Soc. Networks, 1996, no. 18, pp. 173–187.Google Scholar
  57. 57.
    Ragin, C.C., The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies, Los Angeles: Univ. of California Press, 1987.Google Scholar
  58. 58.
    Heise, D., Event Structure Analysis: a Qualitative Model of Quantitative Research, in Using Computers in Qualitative Research, Fielding, N. and Lee, R., Eds., CA: Sage, 1993, pp. 136–163.Google Scholar
  59. 59.
    Griffin, L., Historic Sociology, Narrative and Event Structure Analysis Fifteen Years Later, Soc. Res., 2010, no. 2, pp. 131–140.Google Scholar
  60. 60.
    Lewins, A. and Silver, C., Choosing a CAQDAS Package. http://caqdas.soc.surrey.ac.uk/PDF/2009ChoosingsCAQDASPackage.pdf.
  61. 61.
    Kanygin, G.V., Instrumental Means and Methodological principles of Social Data Mining, Soc.: 4M, 2007, no. 25, pp. 70–98.Google Scholar
  62. 62.
    Baugh, J.B., Hallcom, A.S., and Harris, M.E., Computer Assisted Qualitative Data Analysis Software: a Practical Perspective for Applied Research, Revista Del Instituto Internacional De Costos, 2010, no. 6, pp. 69–81.Google Scholar
  63. 63.
    Romme, A. and Georges, L., Boolean Comparative Analysis of Qualitative Data, Qual. and Quant., 1995, vol. 29, pp. 317–329.CrossRefGoogle Scholar
  64. 64.
    Rihoux, B., Qualitative Comparative Analysis (QCA) and Related Techniques: Recent Advances and Challenges, in Metoden Der Vergleichenden Politik-Und Sozialwissen-Schaft. Neue Entwicklungen Und Anwendungen, Pickel, S., Pickel, G., Lauth, H.-J., and Jahn, D., Eds., Berlin: Springer, 2009, pp. 365–385.CrossRefGoogle Scholar
  65. 65.
    Smelser, N.J., Comparative Methods in the Social Sciences, Englewood Cliffs: Prentice Hall, 1976.Google Scholar
  66. 66.
    Rihoux, B. and De Meur, G., Crisp-Set Qualitative Comparative Analysis, Configurational Comparative Methods, in Qualitative Comparative Analysis (QCA) and Related Techniques (Applied Social Research Methods), Rihoux, B. and Ragin, C.C., Eds., London: Sage Publications, 2009, pp. 33–68.Google Scholar
  67. 67.
    Yablonskii, S.V., Vvedenie v Diskretnuyu Matematiku (Introduction to Discrete Mathematics), Moscow: Nauka, 1986.Google Scholar
  68. 68.
    Cronqvist, L. and Berg-Schlosser, D., Multi-Value QCA, Configurational Comparative Methods, in Qualitative Comparative Analysis (QCA) and Related Techniques (Applied Social Research Methods), Rihoux B. and Ragin, C.C., Eds., London: Sage Publications, 2009, pp. 69–86.Google Scholar
  69. 69.
    Ragin, C.C., Fuzzy-Set Social Science, Chicago: Univ. of Chicago Press, 2000.Google Scholar
  70. 70.
    Ragin, C.C., Qualitative Comparative Analysis Using Fuzzy Sets, Configurational Comparative Methods, in Qualitative Comparative Analysis (QCA) and Related Techniques (Applied Social Research Methods), Rihoux B. and Ragin, C.C., Eds., London: Sage Publications, 2009, pp. 87–122.Google Scholar
  71. 71.
    Berg-Schlosser, D., Comparative Research Design: Case and Variable Selection, Configurational Comparative Methods, in Qualitative Comparative Analysis (QCA) and Related Techniques (Applied Social Research Methods), Rihoux B. and Ragin, C.C., Eds., London: Sage Publications, 2009, pp. 19–32.Google Scholar
  72. 72.
    De Meur, G., Bursness, P., and Gottcheiner, A., MSDO/MDSO Revisited for Public Policy Analysis, in Innovative Comparative Methods for Policy Analysis. Beyond the Quantitative-Qualitative Divide, Rihoux, B. and Grimm, H., Eds., New York: Springer, 2006, pp. 67–94.Google Scholar
  73. 73.
    De Meur, G. and Gottcheiner, A., The Logic and Assumptions of MDSO-MSDO Designs, in The SAGE Handbook of Case-Based Methods, Byrne, D. and Ragin, C.C., Eds., London: Sage Publication, 2009, pp. 208–221.Google Scholar
  74. 74.
    Mahoney, J. and Goertz, G., The Possibility Principle: Choosing Negative Cases in Comparative Research, Amer. Pol. Sci. Rev., 2004, vol. 98, no. 4, pp. 653–669.Google Scholar
  75. 75.
    Caren, N. and Panofsky, A., A Technique for Adding Temporality To Qualitative Comparative Analysis, Soc. Methods and Res., 2005, vol. 34, no. 2, pp. 147–172.MathSciNetCrossRefGoogle Scholar
  76. 76.
    Ragin, C.C. and Rihoux, B., Replies To Commentators: Reassurances and Rebuttals, Newsletter of the American Political Science Association Organized Section on Qualitative Methods, 2004, vol. 2, no. 2, pp. 21–24.Google Scholar
  77. 77.
    Tolstova, Yu.N., Qualitative and Quantitative Analysis: Organic Unity or Independence, Soc. Res., 2004, no. 9, pp. 12–14.Google Scholar
  78. 78.
    Orlov, A.I., Statistical Methods in the Russian Sociology (Thirty Years Later), Soc.: 4M, 2005, no. 20, pp. 32–53.Google Scholar
  79. 79.
    Davydov, A.A., Konkurentnye preimushchestva sistemnoi sotsiologii (Competitive Advantages of Systemic Sociology), Moscow: IS RAN, 2008.Google Scholar
  80. 80.
    Matematicheskie metody v sotsial’nykh naukakh: sb. statei (Mathematical Methods in Social Sciences: Collected Works) Lazarsfel’d, P.K. and Genri, N., Eds., Moscow: Progress, 1973.Google Scholar
  81. 81.
    Matematicheskoe modelirovanie sotsial’nykh protsessov (Mathematical Models of Social Processes), Mikhailov, A.I., Ed., Moscow: Knizhnyi dom “Universitet”, 1998–2010.Google Scholar
  82. 82.
    Chubukova, I.A. Data Mining, Moscow: Izdatel’skii dom “Binom”, 2008.Google Scholar
  83. 83.
    Chesnokov, S.V., Determinatsionnyi analiz sotsial’noekonomicheskikh dannykh, 2-e izd (Determination Analysis of Socioeconomic Data, 2nd Ver.), Moscow: URSS, 2009.Google Scholar
  84. 84.
    Davydov, A., Comments to the Memorandum, IV Conference in Memoriam of Kryshtanovskii A.O. “Modern Problems of Formation of the Method Inventory of the Sociologist”. http://www.ssa-rss.ru/index.php?page-id=273.
  85. 85.
    Ostrovskii, A.M., On Computer technologies of Search of Empirical Regiarities in Databases, Soc.: 4M, 2008, no. 27, pp. 140–157.Google Scholar
  86. 86.
  87. 87.
    Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P., From Data Mining To Knowledge Discovery in Databases, AI Mag., 1996, vol. 17, no. 3, pp. 37–54.Google Scholar
  88. 88.
    Arskii, Yu.M. and Finn, V.K., Principles of Constructing f Intelligent Systems, Inf. Tekhnol. Vychisl. Syst., 2008, no. 4, pp. 4–36.Google Scholar
  89. 89.
    Popper, K., Evolutionary Epistemology, in Evolyutsionnaya epistemologiya i logika sotsial’nykh nauk (Evolutionary Epistemology and Logic of Social Sciences), Moscow: Editorial URSS, 2000, pp. 57–74.Google Scholar
  90. 90.
    Finn, V.K., Reliable Reasoning in Intelligent Systems of DSM Type, in Avtomaticheskoe porozhdenie gipotez v intellektual’nykh sistemakh (Automatic Generation of Hypotheses in Intellectual Systems), Finn, V.K., Ed., Moscow: Knizhnyi dom “Librokom”, 2009, pp. 10–48; Itogi nauki i tekhniki (Results of Science and Technique), Moscow: VINITI, 1991, vol. 15, pp. 54–101.Google Scholar
  91. 91.
    Avtomaticheskoe porozhdenie gipotez v intellektual’nykh sistemakh (Automatic Generation of Hypotheses in Intelligent Systems), Finn, V.K., Ed., Moscow: Knizhnyi dom “Librokom”, 2009, part 3, pp. 409–491.Google Scholar
  92. 92.
    Finn, V.K., Synthesis of Cognitive Procedures and Induction Problem, in Avtomaticheskoe porozhdenie gipotez v intellektual’nykh sistemakh (Automatic Generation of Hypotheses in Intelligent Systems), Finn, V.K., Ed., Moscow: Knizhnyi Dom “Librokom”, 2009, pp. 92–158; Nauchno-Tech. Inf., Ser. 2, 1999, nos. 1–2, pp. 8–45. (Reprinted in Nauchno-Tech. Inf., Ser. 2, 2009, no. 6, pp. 1–37.)Google Scholar
  93. 93.
    Parsons, T.O., Theories and Metatheories, in Teoreticheskaya sotsiologiya. Antologiya (Theoretical Sociology. Anthology), Moscow: Nauka, 2002.Google Scholar
  94. 94.
    Mikheenkova, M.A., On Principles of Formalized Qualitative Social Data Mining, Inf. Tekhnol. Vychislit. Syst., 2009, no. 4, pp. 40–56.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  1. 1.VINITIRussian Academy of SciencesMoscowRussia

Personalised recommendations