Skip to main content
Log in

Advances in robotics (Review)

  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

The state and prospects of macro-, micro-, and nanorobotics are described. The role of industrial robots in the creation of modern automated production is shown. Developments in the field of mobile robots and examples of their use are given. Miniaturization and molecular manufacturing are addressed as two approaches to nanorobot development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corke, P., Robotics: The Past and Future, IEEE Robotics Autom. Mag., 2010, vol. 17, no. 3, p. 2.

    Article  Google Scholar 

  2. Petrina, A.M., Robotics: The Past and Future (In Commemoration of the 25th anniversary of the Foundation of RZh VINITI “Robototekhnika”), Nauchno-Tekh. Inf., 2008, no. 3, pp. 10–16.

  3. Petrina, A.M. and Tiverovskii, V.I., Status and Development of Robotics, Transport: Nauka, Tekhnika, Upravlenie, 2010, no. 4, pp. 27–33.

  4. Velikovich, V.B., Trends in the Development of Robotics, Sborka Mash. Priborostroenii, 2005, no. 2, pp. 31–34.

  5. Robotik Geht Neue Wege, VDI Nachr., 2009, no. 22, p. 12.

  6. Roboter Packen bei den Aufgaben im Mittelstand Zunehmend mit an, VDI Nachr., 2009, no. 9, p. 15.

  7. Dietsch, J., Converging Intelligent Technologies Reshape the Robotics Industry, IEEE Robotics Autom. Mag., 2010, vol. 17, no. 3, p. 17, 25.

    Google Scholar 

  8. Lopota, V.A., Status and Prospects of the Development of Specialized Robotics, Trudy 10-i Vseros. nauch.-prakt. konf. po ekstremal’noi robototekhnike (Proc. 10th Research and Practice Conference on Robotics), St. Petersburg, 2007, pp. 67–68.

  9. Kolesnikov, K.S. and Dubrovskii, V.A., Problems of Mechanical Engineering in 2008, Probl. Mashinostr. Nadezhnosti Mash., 2009, no. 3, pp. 121–126.

  10. Robotics Industry is Getting Back on Track, Weld. Cutting, 2010, vol. 9, no. 4, pp. 180–181.

  11. Kayser, H.J., Robotics Industry Supports Europe with Joint Visions for the Future, Weld. Cutting, 2009, vol. 8, no. 5, p. 234.

    Google Scholar 

  12. World Market for Industrial Robots Continues, Weld. Cutting, 2009, vol. 8, no. 2, pp. 60–62.

  13. Lopota, V.A. and Yurevich, E.I., Extreme Robotics and Mechatronics. Principles and Development Prospects, Mekhatronika, Avtomatizatsiya, Upravlenie, 2007, no. 4, pp. 37–42.

  14. Korsunskii, V.A., Prospects for the Development of Robotics for the Use in Emergencies, Mir I Bezopasnost’, 2009, no. 3, pp. 22–25.

  15. Geits, B., Mechanical future. Microsoft Predicts a Revolution in the Field of Robotics, Sci. Am., 2007, no. 5, pp. 36–43.

  16. Preuss, A., Microsoft Will in Den Robotermarkt, VDI Nachr., 2007, no. 8, p. 13.

  17. Gilpin, K. and Rus, D., Modular Robot Systems. From Self-Assembly To Self-Disassembly, IEEE Robotics Autom. Mag., 2010, vol. 17, no. 3, pp. 38–55.

    Article  Google Scholar 

  18. Sortierobot, BLECH Inform, 2009, no. 5, p. 41.

  19. Iborra, A., Caceres, D. A., Ortiz, F. J., Franco, J. P., Palma, P. S., and Alvarez, B., Design of Service Robots. Experiences Using Software Enjineering, IEEE Robotics Autom. Mag., 2009, vol. 16, no. 1, pp. 24–33.

    Article  Google Scholar 

  20. Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., and Thanh-Hung, N., Designing Autonomous Robots. Toward a More Dependable Software Architecture, IEEE Robotics Autom. Mag., 2009, vol. 16, no. 1, pp. 67–77.

    Article  Google Scholar 

  21. Abbott, J.J., Nagy, Z., Beyeler, F., and Nelson, B.J., Robotics in the Small. Pt. 1. Microrobotics, IEEE Robotics Autom. Mag., 2007, vol. 14, no. 2, pp. 92–103.

    Article  Google Scholar 

  22. Menciassi, A., Eisinberg, A., Izzo, I., and Dario, P., From “Macro” To “Micro” Manipulation: Models and Experiments, IEEE/ASME Trans. Mechatronics, 2004, vol. 9, no. 2, pp. 311–320.

    Article  Google Scholar 

  23. Petrina, A.M., Robotics: from “Micro” To “Nano”, Nauchno-Tekh. Inf., 2010, no. 4, pp. 18–29.

  24. Petrina, A.M., Robotics: from “Micro” To “Nano”, Automatic Documentation and Mathematical Linguistics, 2010, vol. 44, no. 2, pp. 89–101.

    Article  Google Scholar 

  25. Hartman, U., Faszination Nanotechnologie, München: Elsevier Spektrum Akademischer Verlag

  26. Drexler, E., Engines of Creation, New York: Anshor Vooks, 1990.

    Google Scholar 

  27. Ilyushin, V.A. and Velichko, A.A., Processes in Nanotechnology, Novosibirsk: Izd-vo NGTU, 2004.

    Google Scholar 

  28. Quoc, N., Toshishige, Y., Makoto, S., Yusuke, O., Cassell, A.M., Yun, L., Meyyappan, M., and Yang, Cary, Y., Structural and Electrical Characterization of Carbon Nanofibers for Interconnect Via Applications, IEEE Trans. Nanotech., 2007, vol. 6, no. 6, pp. 688–695.

    Article  Google Scholar 

  29. Petrina, A.M., Carbon Nanotubes for Nanomanipulation, Automatic Documentation and Mathematical Linguistics, 2010, vol. 44, no. 1, pp. 44–52.

    Article  Google Scholar 

  30. Ferreira, A. and Mavroidis, G., Virtual Reality and Haptics for Nanorobotics, IEEE Robotics Autom. Mag., 2006, vol. 13, no. 3, pp. 78–92.

    Article  Google Scholar 

  31. Petrina, A. and Petrin, A., On the Question of Information Processing in Nanomanipulation Tasks, Autom. Doc. Math. Linguist., 2008, vol. 42, no. 2, pp. 136–142.

    Article  Google Scholar 

  32. Fatikov, S., Thomas, W., Helge, H., Torsten, S., and Marco, J., Microrobot System for Automatic Nanohadling Inside a Scanning Electron Microscope, IEEE/ASME Tras. Mechatronics, 2007, vol. 12, no. 3, pp. 244–252.

    Article  Google Scholar 

  33. Petrina, A.M. and Mainasheva, G.M., Information Measuring Systems in Nanotechnology, Autom. Doc. Math. Linguist., 2010, vol. 44, no. 4, pp. 187–198.

    Article  Google Scholar 

  34. Feddema, J.T., Xavier, P., and Broun, R., Micro-Assembly Planning with Van Der Waals Force, J. Micromechatron, 2001, vol. 1, no. 2, pp. 139–153.

    Article  Google Scholar 

  35. Fok, L.M., Liu, Y.H., and Li, W.J., Modeling of Haptic Sensing of Nanolitography with An Atomic Force Microscope, Proc. IEEE Int. Conf. Robotics Automation (Barcelona, 2005), 2005, pp. 2457–2462.

  36. Nakajima, M., Arai, E., Dong, L., Nagai, M., and Fukuda, T., Hibrid Nanorobotic Manipulation System Inside Scanning Electron Microscope and Transmission Electron Microscope, Proc. IEEE Int. Conf. Intelligent Robots System (Sendai, 2004), 2004, pp. 589–594.

  37. Fahlbusch, S., Shirinov, A., and Fatikow, S., AFM-Based Micro Force Sensor and Haptic Interface for a Nanohandling Robot, Proc. IEEE/RSJ Int. Conf. Intelligent Robots System (Lausanne, 2002), pp. 1772–1777.

  38. Dong, L., Arai, F., and Fukuda, T., Destructive Constructions of Nanostructures With Carbon Nanotubes Through Nanorobotic Manipulation, IEEE Trans. Mechatronics, 2004, vol. 9, no. 2, pp. 350–357.

    Article  Google Scholar 

  39. Jang, J.E., Cha, S.N., Choi, Y., Kang, D.J., Hasko, D.G., Jung, J.E., Kim, J.M., and Amaratunga, G.A.J., A Nanogripper Employing Aligned Multiwall Carbon Nanotubes, IEEE Trans. Nanotech., 2008, vol. 7, no. 4, pp. 389–393.

    Article  Google Scholar 

  40. Dequesnes, M., Rotkin, S.V., and Aluru, N.R., Calculation of Pull in Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches, Nanotecnology, 2002, vol. 13, pp. 120–131.

    Article  Google Scholar 

  41. Guthold, M., Falvo, M.R., Matthews, W.G., Paulson, S., Washburn, S., Erie, D.A., Superfine, R., Brooks, F.P., and Taylor, R.M., Controlled Manipulation of Molecular Samples with the NanoManipulator, IEEE/ASME Trans. Mechatronics, 2000, vol. 5, no. 2, pp. 189–198.

    Article  Google Scholar 

  42. Joachim, C. and Plévert, L., Nanosciences: La Révolution Invisible, France: Seuil, 2008.

    Google Scholar 

  43. Donald, B.R., Levey, C.G., McGray, C.D., Paprothy, I., and Rus, D. An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot, J. Microelectromech. Syst., 2006, vol. 15, no. 1, pp. 1–15.

    Article  Google Scholar 

  44. Sahu, B., Taylor, C.R., and Leang, K., Emerging Challenges of Microactuators for Nanoscale Positioning, Assembly, and Manipulation, J. Microelectromech. Syst., 2010, vol. 132, pp. 030917/1–030917/16.

    Google Scholar 

  45. Petrina, A.M., Designing Elements of Micro- and Nanomanipulation, Nauchno-Tekh. Inf., 2009, no. 7, pp. 23–31.

  46. Guthold, M., Falvo, M.R., Matthews, W.G., Paulson, S., Washburn, S., Erie, D., Superfine, R., Brooks, F.P., and Taylor, R.M.II, Controlled Manipulation of Molecular Samples with the Nanomanipulator, IEEE/ASME Trans. Mechatronics, 2000, vol. 5, no. 2, pp. 189–198.

    Article  Google Scholar 

  47. Iishiyama, K., Arai, K.I., Sendon, M., and Yamazaki, A., Spiral-Type Micro-Machine for Medical Applications, J. Micromech, 2003, vol. 2, no. 1, pp. 77–86.

    Article  Google Scholar 

  48. Yesin, K.B., Vollmers, K., and Nelson, B. J., Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment using Electromagnetic Fields, Int. J. Robot Res., 2006, vol. 25, nos. 5–6, pp. 527–536.

    Article  Google Scholar 

  49. Mathieu, J.B., Beaudoin, G., and Martel, S., Method of Propulsion of a Ferromagnetic Core in the Cardiovascular System through Magnetic Gradients Generated by an MRI System, IEEE Trans. Biomed. Eng., 2006, vol. 53, no. 2, pp. 199–292.

    Article  Google Scholar 

  50. Li, G., Xi, N., Yu, M., Salem, F., Wang, D.H., and Li, J., In Situ Sensing and Manipulation of Molecules in Biological Samples using Nanorobotic System, Nanomedicine: Nanotechnol., Biol. Med., 2005, vol. 1, no. 1, pp. 31–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Petrina, 2011, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2, 2011, No. 3, pp. 1–16.

About this article

Cite this article

Petrina, A.M. Advances in robotics (Review). Autom. Doc. Math. Linguist. 45, 43–57 (2011). https://doi.org/10.3103/S000510551102004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S000510551102004X

Keywords

Navigation