Skip to main content
Log in

Simulation Study of the Photovoltaic Performance of WS2 Based Transition Metal Dichalcogenide Solar Cell

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The one-dimensional software known as solar cell capacitance simulator, commonly called as SCAPS-1D, has been used to study the transition metal dichalcogenide WS2/CdS/ZnO:Al solar cell with WS2 as the absorber layer material. Variations in thickness, ambient temperature, density of defects, and defect charge states have been used to study the photovoltaic performance parameters. So as to achieve increased efficiency, it was shown that the defect concentration in the light absorbing layer needs to be decreased to the lowest achievable values. Additionally, it has been found that the characteristics showing the performance of the solar cells are significantly influenced by the charge type of the defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Razykov, T.M., Kuchkarov, K.M., Ergashev, B.A., and Esanov, S.A., Fabrication of thin-film solar cells based on CdTe films and investigation of their photoelectrical properties, Appl. Sol. Energy, 2020, vol. 56, pp. 94–98.

    Article  Google Scholar 

  2. Kobulov, R.R., Matchanov, N.A., Ataboev, O.K., and Akbarov, F.A., Solar cells based on Cu(In, Ga)Se2 thin-film layers, Appl. Sol. Energy, 2019, vol. 55, pp. 83–90.

    Article  Google Scholar 

  3. Komilov, A.G., Influence of CdS buffer layer thickness on the photovoltaic parameters of solar cells, Appl. Sol. Energy, 2018, vol. 54, pp. 308–309.

    Article  Google Scholar 

  4. Mathur, A.S. and Singh, B.P., Study of effect of defects on CdS/CdTe heterojunction solar cell, Optik (Stuttgart), 2020, vol. 212, p. 164717.

    Article  Google Scholar 

  5. Mathur, A.S., et al., Role of defect density in absorber layer of ternary chalcogenide Cu2SnS3 solar cell, Opt. Mater. (Amsterdam), 2021, vol. 119, p. 111314.

    Article  Google Scholar 

  6. Sobayel, K., et al., Numerical modeling on prospective buffer layers for tungsten di-sulfide (WS2) solar cells by SCAPS-1D, Chalcogenide Lett., 2018, vol. 15, no. 6.

  7. Rashid, H., Rahman, K.S., Hossain, M.I., Tabet, N., Alharbi, F.H., and Amin, N., Prospects of molybdenum disulfide (MoS2) as an alternative absorber layer material in thin film solar cells from numerical modeling, Chalcogenide Lett., 2014, vol. 11, no. 8, pp. 397–403.

    Google Scholar 

  8. Gourmelon, E., et al., MS2 (M = W, Mo) photosensitive thin films for solar cells, Sol. Energy Mater. Sol. Cells, 1997, vol. 46, no. 2, pp. 115–121.

    Article  Google Scholar 

  9. Bichsel, R., Levy, F., and Mathieu, H.J., Study of r.f. magnetron-sputtered MoSe2 films by electron spectroscopy for chemical analysis, Thin Solid Films, 1985, vol. 131, nos. 1–2, pp. 87–94.

    Article  Google Scholar 

  10. Jäger-Waldau, A., Lux-Steiner, M., Jäger-Waldau, R., Burkhardt, R., and Bucher, E., Composition and morphology of MoSe2 thin films, Thin Solid Films, 1990, vol. 189, no. 2, pp. 339–345.

    Article  Google Scholar 

  11. Pouzet, J. and Bernede, J.C., MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films, Revue de physique appliquée, 1990, vol. 25, no. 8, pp. 807–815.

    Article  Google Scholar 

  12. Bourezg, R., Couturier, G., Salardenne, J., and Lévy, F., Interface of n-type WSe2 photoanodes in aqueous solution. I. Electrical properties, Phys. Rev. B, 1992, vol. 46, no. 23, p. 15404.

    Article  Google Scholar 

  13. Tenne, R., and Wold, A., Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cell, Appl. Phys. Lett., 1985, vol. 47, no. 7, pp. 707–709.

    Article  Google Scholar 

  14. Mathur, A.S., Dubey, S., and Singh, B.P., Study of role of different defects on the performance of CZTSe solar cells using SCAPS, Optik (Stuttgart), 2020, vol. 206, p. 163245.

    Article  Google Scholar 

  15. Dubey, S., Mathur, A.S., and Singh, B.P., Effect of defect density in different layers and ambient temperature of n-i-p a-Si single junction solar cells performance, Int. J. Sci. Res. Phys. Appl. Sci., 2019, vol. 7, no. 2, pp. 93–98.

    Google Scholar 

  16. Burgelman, M., Nollet, P., and Degrave, S., Modelling polycrystalline semiconductor solar cells, Thin Solid Films, 2000, vol. 361, pp. 527–532.

    Article  Google Scholar 

  17. Burgelman, M., Verschraegen, J., Degrave, S., and Nollet, P., Modeling thin-film PV devices, Prog. Photovoltaics: Res. Appl., 2004, vol. 12, nos. 2–3, pp. 143–153.

    Article  Google Scholar 

  18. Decock, K., Khelifi, S., and Burgelman, M., Modelling multivalent defects in thin film solar cells, Thin Solid Films, 2011, vol. 519, no. 21, pp. 7481–7484.

    Article  Google Scholar 

  19. Verschraegen, J., and Burgelman, M., Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS, Thin Solid Films, 2007, vol. 515, no. 15, pp. 6276–6279.

    Article  Google Scholar 

  20. Marlein, J., Decock, K., and Burgelman, M., Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells, Thin Solid Films, 2009, vol. 517, no. 7, pp. 2353–2356.

    Article  Google Scholar 

  21. Nollet, P., Burgelman, M., and Degrave, S., The back contact influence on characteristics of CdTe/CdS solar cells, Thin Solid Films, 2000, vol. 361, pp. 293–297.

    Article  Google Scholar 

  22. Khelifi, S., Verschraegen, J., Burgelman, M., and Belghachi, A., Numerical simulation of the impurity photovoltaic effect in silicon solar cells, Renewable Energy, 2008, vol. 33, no. 2, pp. 293–298.

    Article  Google Scholar 

  23. Tulka, T.K., Alam, N., Elme, K.M., and Hossain, M.M., Efficiency enhancement of an ultra-thin eco-friendly all-inorganic CsGeI3 perovskite photovoltaic cell using SCAPS-1D, Appl. Sol. Energy, 2022, vol. 58, no. 1, pp. 28–39.

    Article  Google Scholar 

  24. Bitam, H., Zaidi, B., Hadjoudja, B., Shekhar, C., Gagui, S., and Ullah, M.S., Junction configuration effects on the photovoltaic parameters of a-Si/Cu2ZnSnS4 solar cells, Appl. Sol. Energy, 2022, vol. 58, no. 2, pp. 198–202.

    Article  Google Scholar 

  25. Yadav, N., Roy, P., and Khare, A., An investigation of defects, band-offset, and Schottky barrier height for boosting the performance of formamidinium mixed cation mixed halide based perovskite solar cell: Theoretical approach, Mater. Sci. Eng.: B, 2023, vol. 293, p. 116458. https://doi.org/10.1016/j.mseb.2023.116458

    Article  Google Scholar 

  26. Movla, H., Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis, Optik (Stuttgart), 2014, vol. 125, no. 1, pp. 67–70.

    Article  Google Scholar 

  27. Lundberg, O., Bodegård, M., Malmström, J., and Stolt, L., Influence of the Cu(In, Ga)Se2 thickness and Ga grading on solar cell performance, Prog. Photovoltaics: Res. Appl., 2003, vol. 11, no. 2, pp. 77–88.

    Article  Google Scholar 

  28. Jehl, Z., et al., Thinning of CIGS solar cells: Part II: Cell characterizations, Thin Solid Films, 2011, vol. 519, no. 21, pp. 7212–7215.

    Article  Google Scholar 

  29. Lin, P., et al., Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D, J. Appl. Sci. Eng., 2014, vol. 17, no. 4, pp. 383–390.

    Google Scholar 

  30. Al Ahmed, S.R., Sunny, A., and Rahman, S., Performance enhancement of Sb2Se3 solar cell using a back surface field layer: A numerical simulation approach, Sol. Energy Mater. Sol. Cells, 2021, vol. 221, p. 110919.

    Article  Google Scholar 

  31. Matin, M.A., Tomal, M.U., Robin, A.M., and Amin, N., Numerical analysis of novel back surface field for high efficiency ultrathin CdTe solar cells, Int. J. Photoenergy, 2013, vol. 2013, p. 652695.

    Article  Google Scholar 

  32. Nakada, T. and Mizutani, M., 18% Efficiency Cd-free Cu(In, Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers, Jpn. J. Appl. Phys., 2002, vol. 41, no. 2B, p. L165.

    Article  Google Scholar 

  33. Enam, F.M.T., et al., Design prospects of cadmium telluride/silicon (CdTe/Si) tandem solar cells from numerical simulation, Optik (Stuttgart), 2017, vol. 139, pp. 397–406. https://doi.org/10.1016/j.ijleo.2017.03.106

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The Department of Electronics and Information Systems (ELIS), University of Gent, Belgium, and Prof. M. Burgelman and his colleagues are gratefully acknowledged by the authors for their assistance in making SCAPS simulation software available.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mathur.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, A.S., Singh, B.P. Simulation Study of the Photovoltaic Performance of WS2 Based Transition Metal Dichalcogenide Solar Cell. Appl. Sol. Energy 59, 851–856 (2023). https://doi.org/10.3103/S0003701X24600061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X24600061

Keywords:

Navigation