Abstract—
In this work, a new simpler and more efficient method is proposed to estimate the unknown photovoltaic (PV) parameters of solar cells and PV modules. The proposed method is based on combined analytical and numerical (CAN) approaches. Since the theory and structure of this method are succinct, it can be applied easily. For this study, a single-diode model known as a five parameters model was chosen for modeling the solar cells and PV modules. The proposed technique of PV parameters determination aims to minimize the absolute error between experimental and calculated output current while increasing the speed of convergence to the optimum solution. The accuracy of the suggested approach is tested on a commercial monocrystalline silicon (R.T.C France) solar cell at 33°C and 1000 W/m2 and two PV modules: a commercial Photowatt-PWP 201 in which 36 polycrystalline silicon cells are connected in series with experimental current-voltage characteristic given at 45°C and 1000 W/m2, and an amorphous module referred to as Cocoa aSiMicro03036 with varying environmental conditions. Comprehensive results and statistical analysis indicate that the proposed CAN method is more accurate than most of the published techniques. This accuracy has been proven by lowest statistical errors for all treated data. This good agreement is identified also by the lowest root mean squared error obtained with a value of 7.920179 × 10−4 and 2.083999 × 10−3 for the case RTC France solar cell and Photowatt-PWP 201 PV module respectively, while being lower than 3.948 × 10−4 for the case of Cocoa aSiMicro03036 PV module.
This is a preview of subscription content,
to check access.











REFERENCES
Nassar-eddine, I., Obbadi, A., Errami, Y., et al., Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study, Energy Convers. Manage., 2016, vol. 119, pp. 37–48.
Parida, B., Iniyan, S., and Goic, R., A review of solar photovoltaic technologies, Renewable Sustainable Energy Rev., 2011, vol. 15 no. 3, pp. 1625–1636.
Chen, Z., Wu, L., Lin, P., Wu, Y., et al., Parameter’s identification of photovoltaic models using hybrid adaptive Nelder–Mead simplex algorithm based on eagle strategy, Appl. Energy, 2016, vol. 182, pp. 47–57.
Mahmoud, Y. and El-Saadany, E., Accuracy improvement of the ideal PV model, IEEE Trans. Sustainable Energy, 2015, vol. 6, no. 3, pp. 909–911.
Alam, D.F., Yousri, D.A., and Eteiba, M.B., Flower pollination algorithm based solar PV parameter estimation, Energy Convers. Manage., 2015, vol. 101, pp. 410–422.
Louzazni, M., Khouya, A., Amechnoue, K., et al., Analytical modelling and analysis of thermal behavior for series resistance of solar cell, in Advanced Intelligent Systems Applied to Energy, Cham: Springer, 2019, pp. 21–29.
Harrag, A. and Messalti, S., Three, five and seven PV model parameters extraction using PSO, Energy Procedia, 2017, vol. 119, pp. 767-774.
Magare, D.B., Nichinte, A.S., and Vyawahare, V.A., Estimation of module temperature effects on seasonal performance variation of different photovoltaic technology modules, Appl. Sol. Energy, 2022, vol. 58, pp. 226–237. https://doi.org/10.3103/S0003701X22020116
Almaktar, M., Rahman, H.A., Hassan, M.Y., et al., Climate-based empirical model for PV module temperature estimation in tropical environment, Appl. Sol. Energy, 2013, vol. 49, pp. 192–201. https://doi.org/10.3103/S0003701X13040026
Hali, A. and Khlifi, Y., A new method for photovoltaic parameters extraction under variable weather conditions, Proc. 6th Int. Conf. on Wireless Technologies, Embedded, and Intelligent Systems, Singapore: Springer, 2022, pp. 565–574.
Bouali, C., Schulte, H., and Mami, A., A high performance optimizing method for modeling photo-voltaic cells and modules array based on discrete symbiosis organism search, Energies, 2019, vol. 12, no. 12, p. 2246.
Humada, A.M., Hojabri, M., Mekhilef, S., et al., Solar cell parameters extraction based on single and double-diode models: A review, Renewable Sustainable Energy Rev., 2016, vol. 56, pp. 494–509.
Ma, J., Ting, T. O., Man, K. L., Zhang, N., et al., Parameter estimation of photovoltaic models via cuckoo search, J. Appl. Math., 2013, vol. 2013, pp. 10–12.
Kanwar, K. and Vajpai, D.J. Performance evaluation of different models of PV panel in MATLAB/ Simulink environment, Appl. Sol. Energy, 2022, vol. 58, pp. 86–94. https://doi.org/10.3103/S0003701X22010078
Cotfas, D.T., Cotfas, P.A., and Kaplanis, S., Methods to determine the dc parameters of solar cells: A critical review, Renewable Sustainable Energy Rev., 2013, vol. 28, pp. 588–596.
Louzazni, M. and Aroudam, E., An analytical mathematical modeling to extract the parameters of solar cell from implicit equation to explicit form, Appl. Sol. Energy, 2015, vol. 51, pp. 165–171. https://doi.org/10.3103/S0003701X15030068
Ibrahim, H. and Anani, N., Evaluation of analytical methods for parameter extraction of PV modules, Energy Procedia, 2017, vol. 134, pp. 69-78.
Zhang, Y., Gao, S., and Gu, T., Prediction of I–V characteristics for a PV panel by combining single diode model and explicit analytical model, Sol. Energy, 2017, vol. 144, pp. 349–355.
El Tayyan, A.A., An approach to extract the parameters of solar cells from their illuminated I–V curves using the Lambert W function, Turk. J. Phys., 2015, vol. 39, no. 1, pp. 1–15.
Easwarakhanthan, T., Bottin, J., Bouhouch, I., and Boutrit, C., Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers, Int. J. Sol. Energy, 1986, vol. 4, no. 1, pp. 1–12.
Lun, S.X., Guo, T.T., and Du, C.J., A new explicit I–V model of a silicon solar cell based on Chebyshev polynomials, Sol. Energy, 2015, vol. 119, pp. 179–194.
Radziemska, E., Dark I-U-T measurements of single crystalline silicon solar cells, Energy Convers. Manage., 2005, vol. 46, nos. 9–10, pp. 1485–1494.
Charles, J.P., Abdelkrim, M., Muoy, Y.H., et al. A practical method of analysis of the current-voltage characteristics of solar cells, Sol. Cells, 1981, vol. 4, no. 2, pp. 169–178.
Araujo, G. L., Sanchez, E., A new method for experimental determination of the series resistance of a solar cell, IEEE Trans. Electron Devices, 1982, vol. 29, no. 10, pp. 1511–1513.
Marion, W., Anderberg, A., Deline, C., et al., User’s Manual for Data for Validating Models for PV Module Performance, 2014. https://www.nrel.gov/docs/fy14osti/61610.pdf. Accessed March 9, 2023.
Gnetchejo, P. J., Ndjakomo Essiane, S., Ele, P., et al., Important notes on parameter estimation of solar photovoltaic cell, Energy Convers. Manage., 2019, vol. 197, p. 111870.
Premkumar, M., Jangir, P., Ramakrishnan, C., Nalinipriya, G., et al., Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with Chaotic Drifts, IEEE Access, 2021, vol. 9, pp. 62347–62379.
Diab, A.A.Z., Sultan, H.M., Aljendy, R., et al., Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules, IEEE Access, 2020, vol. 8, pp. 119668–119687.
Jiao, S., Chong, G., Huang, C., Hu, H., et al., Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models, Energy, 2020, vol. 203, p. 117804.
Shaheen, A.M., Ginidi, A.R., El-Sehiemy, R.A., and Ghoneim, S.S.M., A forensic-based investigation algorithm for parameter extraction of solar cell models, IEEE Access, 2021, vol. 9, pp. 1–20.
Gnetchejo, P.J., Essiane, S.N., Ele, P., Wamkeue, R., et al., Enhanced vibrating particles system algorithm for parameters estimation of photovoltaic system, J. Power Energy Eng., 2019, vol. 7, no. 8, pp. 1–26.
Long, W., Cai, S., Jiao, J., Xu, M., et al., A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models, Energy Convers. Manage., 2020, vol. 203, p. 112243.
Kanimozhi, G. and Harish, K., Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function, Appl. Soft Comput. J., 2018, vol. 71, pp. 141–151.
Kler, D., Sharma, P., Banerjee, A., Rana, K. P. S., et al., PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm, Swarm Evol. Comput., 2017, vol. 35, pp. 93–110.
Lin, X. and Wu, Y., Parameter’s identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture, Energy, 2020, vol. 196, p. 117054.
Liang, J., Qiao, K., Yuan, M., et al., Evolutionary multi-task optimization for parameters extraction of photovoltaic models, Energy Convers. Manage., 2020, vol. 207, p. 112509.
Fan, Y., Wang, P., Heidari, A. A., Zhao, X., et al., Delayed dynamic step shuffling frog-leaping algorithm for optimal design of photovoltaic models, Energy Rep., 2021, vol. 7, pp. 228–246.
Ye, X., Liu, W., Li, H., Wang, M., et al., Modified whale optimization algorithm for solar cell and PV module parameter identification, Complexity, 2021, vol. 2021.
Liu, Y., Heidari, A. A., Ye, X., et al., Evolutionary shuffled frog leaping with memory pool for parameter optimization, Energy Rep., 2021, vol. 7, pp. 584–606.
Wu, L., Chen, Z., Long, C., Cheng, S., et al., Parameter extraction of photovoltaic models from measured I–V characteristics curves using a hybrid trust-region reflective algorithm, Appl. Energy, 2018, vol. 232, pp. 36–53.
Li, S., Gong, W., Yan, X., et al., Parameter estimation of photovoltaic models with mimetic adaptive differential evolution, Sol. Energy, 2019, vol. 190, pp. 465–474.
Yu, K., Qu, B., Yue, C., Ge, S., et al., A performanceguided JAYA algorithm for parameters identification for photovoltaic cell and module, Appl. Energy, 2019, vol. 237, pp. 241–257.
Chin, V.J. and Salam, Z., Coyote optimization algorithm for the parameter extraction of photovoltaic cells, Sol. Energy, 2019, vol. 194, pp. 656–670.
Chen, H., Jiao, S., Heidari, A.A., et al., An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models, Energy Convers. Manage., 2019, vol. 195, pp. 927–942.
Rezaee Jordehi, A., Enhanced leader particle swarm optimization (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules, Solar Energy, 2018, vol. 159, pp. 78–87.
Ben Messaoud, R., Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization, Energy Rep., 2020, vol. 6, pp. 350–357.
Gude, S. and Jana, K.C., Parameter extraction of photovoltaic cell using an improved cuckoo search ptimization, Sol. Energy, 2020, vol. 204, pp. 280–293.
Li, S., Gong, W., Yan, X., Hu, C., et al., Parameter extraction of photovoltaic models using an improved teaching-learning based optimization, Energy Convers. Manage., 2019, vol. 86, pp. 293–305.
Yu, K., Liang, J.J., Qu, B. Y., Cheng, Z., et al., Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Appl. Energy, 2018, vol. 226, pp. 408–422.
Jian, X. and Weng, Z., A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models, Optik, 2020, vol. 203, p. 164041.
Chin, V.J. and Salam, Z., A new three-point-based approach for the parameter extraction of photovoltaic cells, Appl. Energy, 2019, vol. 237, pp. 519–533.
Beigi, A.M. and Maroosi, A., Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search algorithms, Sol. Energy, 2018, vol. 171, pp. 435–446.
Abd Elaziz, M. and Oliva, D., Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm, Energy Convers. Manage., 2018, vol. 171, pp. 1843–1859.
Calasan, M., Abdel Aleem, S.H.E., and Zobaa, A.F., On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function, Energy Convers. Manage., 2020, vol. 210, p. 112716.
Orioli, A. and Di Gangi, A., A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data, Appl. Energy, 2013, vol. 102, pp. 1160–1177.
ACKNOWLEDGMENTS
The authors gratefully thank National Renewable Energy Laboratory (NREL) for providing experimental data of Cocoa aSiMicro03036 PV module under various temperatures and irradiation levels. Aissa Hali: Conceptualization, Methodology, Software, Validation. Yamina Khlifi: Conceptualization, Methodology, Writing, Review and Editing, Formal analysis.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Hali, A., Khlifi, Y. Fast and Efficient Way of PV Parameters Estimation Based on Combined Analytical and Numerical Approaches. Appl. Sol. Energy 59, 135–151 (2023). https://doi.org/10.3103/S0003701X23700019
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S0003701X23700019