Skip to main content
Log in

Fast and Efficient Way of PV Parameters Estimation Based on Combined Analytical and Numerical Approaches

Applied Solar Energy Aims and scope Submit manuscript

Cite this article

Abstract

In this work, a new simpler and more efficient method is proposed to estimate the unknown photovoltaic (PV) parameters of solar cells and PV modules. The proposed method is based on combined analytical and numerical (CAN) approaches. Since the theory and structure of this method are succinct, it can be applied easily. For this study, a single-diode model known as a five parameters model was chosen for modeling the solar cells and PV modules. The proposed technique of PV parameters determination aims to minimize the absolute error between experimental and calculated output current while increasing the speed of convergence to the optimum solution. The accuracy of the suggested approach is tested on a commercial monocrystalline silicon (R.T.C France) solar cell at 33°C and 1000 W/m2 and two PV modules: a commercial Photowatt-PWP 201 in which 36 polycrystalline silicon cells are connected in series with experimental current-voltage characteristic given at 45°C and 1000 W/m2, and an amorphous module referred to as Cocoa aSiMicro03036 with varying environmental conditions. Comprehensive results and statistical analysis indicate that the proposed CAN method is more accurate than most of the published techniques. This accuracy has been proven by lowest statistical errors for all treated data. This good agreement is identified also by the lowest root mean squared error obtained with a value of 7.920179 × 10−4 and 2.083999 × 10−3 for the case RTC France solar cell and Photowatt-PWP 201 PV module respectively, while being lower than 3.948 × 10−4 for the case of Cocoa aSiMicro03036 PV module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Nassar-eddine, I., Obbadi, A., Errami, Y., et al., Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study, Energy Convers. Manage., 2016, vol. 119, pp. 37–48.

    Article  Google Scholar 

  2. Parida, B., Iniyan, S., and Goic, R., A review of solar photovoltaic technologies, Renewable Sustainable Energy Rev., 2011, vol. 15 no. 3, pp. 1625–1636.

    Article  Google Scholar 

  3. Chen, Z., Wu, L., Lin, P., Wu, Y., et al., Parameter’s identification of photovoltaic models using hybrid adaptive Nelder–Mead simplex algorithm based on eagle strategy, Appl. Energy, 2016, vol. 182, pp. 47–57.

    Article  Google Scholar 

  4. Mahmoud, Y. and El-Saadany, E., Accuracy improvement of the ideal PV model, IEEE Trans. Sustainable Energy, 2015, vol. 6, no. 3, pp. 909–911.

    Article  Google Scholar 

  5. Alam, D.F., Yousri, D.A., and Eteiba, M.B., Flower pollination algorithm based solar PV parameter estimation, Energy Convers. Manage., 2015, vol. 101, pp. 410–422.

    Article  Google Scholar 

  6. Louzazni, M., Khouya, A., Amechnoue, K., et al., Analytical modelling and analysis of thermal behavior for series resistance of solar cell, in Advanced Intelligent Systems Applied to Energy, Cham: Springer, 2019, pp. 21–29.

    Google Scholar 

  7. Harrag, A. and Messalti, S., Three, five and seven PV model parameters extraction using PSO, Energy Procedia, 2017, vol. 119, pp. 767-774.

    Article  Google Scholar 

  8. Magare, D.B., Nichinte, A.S., and Vyawahare, V.A., Estimation of module temperature effects on seasonal performance variation of different photovoltaic technology modules, Appl. Sol. Energy, 2022, vol. 58, pp. 226–237. https://doi.org/10.3103/S0003701X22020116

    Article  Google Scholar 

  9. Almaktar, M., Rahman, H.A., Hassan, M.Y., et al., Climate-based empirical model for PV module temperature estimation in tropical environment, Appl. Sol. Energy, 2013, vol. 49, pp. 192–201. https://doi.org/10.3103/S0003701X13040026

    Article  Google Scholar 

  10. Hali, A. and Khlifi, Y., A new method for photovoltaic parameters extraction under variable weather conditions, Proc. 6th Int. Conf. on Wireless Technologies, Embedded, and Intelligent Systems, Singapore: Springer, 2022, pp. 565–574.

  11. Bouali, C., Schulte, H., and Mami, A., A high performance optimizing method for modeling photo-voltaic cells and modules array based on discrete symbiosis organism search, Energies, 2019, vol. 12, no. 12, p. 2246.

    Article  Google Scholar 

  12. Humada, A.M., Hojabri, M., Mekhilef, S., et al., Solar cell parameters extraction based on single and double-diode models: A review, Renewable Sustainable Energy Rev., 2016, vol. 56, pp. 494–509.

    Article  Google Scholar 

  13. Ma, J., Ting, T. O., Man, K. L., Zhang, N., et al., Parameter estimation of photovoltaic models via cuckoo search, J. Appl. Math., 2013, vol. 2013, pp. 10–12.

    Article  MathSciNet  Google Scholar 

  14. Kanwar, K. and Vajpai, D.J. Performance evaluation of different models of PV panel in MATLAB/ Simulink environment, Appl. Sol. Energy, 2022, vol. 58, pp. 86–94. https://doi.org/10.3103/S0003701X22010078

    Article  Google Scholar 

  15. Cotfas, D.T., Cotfas, P.A., and Kaplanis, S., Methods to determine the dc parameters of solar cells: A critical review, Renewable Sustainable Energy Rev., 2013, vol. 28, pp. 588–596.

    Article  Google Scholar 

  16. Louzazni, M. and Aroudam, E., An analytical mathematical modeling to extract the parameters of solar cell from implicit equation to explicit form, Appl. Sol. Energy, 2015, vol. 51, pp. 165–171. https://doi.org/10.3103/S0003701X15030068

    Article  Google Scholar 

  17. Ibrahim, H. and Anani, N., Evaluation of analytical methods for parameter extraction of PV modules, Energy Procedia, 2017, vol. 134, pp. 69-78.

    Article  Google Scholar 

  18. Zhang, Y., Gao, S., and Gu, T., Prediction of I–V characteristics for a PV panel by combining single diode model and explicit analytical model, Sol. Energy, 2017, vol. 144, pp. 349–355.

    Article  Google Scholar 

  19. El Tayyan, A.A., An approach to extract the parameters of solar cells from their illuminated I–V curves using the Lambert W function, Turk. J. Phys., 2015, vol. 39, no. 1, pp. 1–15.

    Article  Google Scholar 

  20. Easwarakhanthan, T., Bottin, J., Bouhouch, I., and Boutrit, C., Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers, Int. J. Sol. Energy, 1986, vol. 4, no. 1, pp. 1–12.

    Article  Google Scholar 

  21. Lun, S.X., Guo, T.T., and Du, C.J., A new explicit I–V model of a silicon solar cell based on Chebyshev polynomials, Sol. Energy, 2015, vol. 119, pp. 179–194.

    Article  Google Scholar 

  22. Radziemska, E., Dark I-U-T measurements of single crystalline silicon solar cells, Energy Convers. Manage., 2005, vol. 46, nos. 9–10, pp. 1485–1494.

    Article  Google Scholar 

  23. Charles, J.P., Abdelkrim, M., Muoy, Y.H., et al. A practical method of analysis of the current-voltage characteristics of solar cells, Sol. Cells, 1981, vol. 4, no. 2, pp. 169–178.

    Article  Google Scholar 

  24. Araujo, G. L., Sanchez, E., A new method for experimental determination of the series resistance of a solar cell, IEEE Trans. Electron Devices, 1982, vol. 29, no. 10, pp. 1511–1513.

    Article  Google Scholar 

  25. Marion, W., Anderberg, A., Deline, C., et al., User’s Manual for Data for Validating Models for PV Module Performance, 2014. https://www.nrel.gov/docs/fy14osti/61610.pdf. Accessed March 9, 2023.

  26. Gnetchejo, P. J., Ndjakomo Essiane, S., Ele, P., et al., Important notes on parameter estimation of solar photovoltaic cell, Energy Convers. Manage., 2019, vol. 197, p. 111870.

    Article  Google Scholar 

  27. Premkumar, M., Jangir, P., Ramakrishnan, C., Nalinipriya, G., et al., Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with Chaotic Drifts, IEEE Access, 2021, vol. 9, pp. 62347–62379.

    Article  Google Scholar 

  28. Diab, A.A.Z., Sultan, H.M., Aljendy, R., et al., Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules, IEEE Access, 2020, vol. 8, pp. 119668–119687.

    Article  Google Scholar 

  29. Jiao, S., Chong, G., Huang, C., Hu, H., et al., Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models, Energy, 2020, vol. 203, p. 117804.

    Article  Google Scholar 

  30. Shaheen, A.M., Ginidi, A.R., El-Sehiemy, R.A., and Ghoneim, S.S.M., A forensic-based investigation algorithm for parameter extraction of solar cell models, IEEE Access, 2021, vol. 9, pp. 1–20.

    Article  Google Scholar 

  31. Gnetchejo, P.J., Essiane, S.N., Ele, P., Wamkeue, R., et al., Enhanced vibrating particles system algorithm for parameters estimation of photovoltaic system, J. Power Energy Eng., 2019, vol. 7, no. 8, pp. 1–26.

    Article  Google Scholar 

  32. Long, W., Cai, S., Jiao, J., Xu, M., et al., A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models, Energy Convers. Manage., 2020, vol. 203, p. 112243.

    Article  Google Scholar 

  33. Kanimozhi, G. and Harish, K., Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function, Appl. Soft Comput. J., 2018, vol. 71, pp. 141–151.

    Article  Google Scholar 

  34. Kler, D., Sharma, P., Banerjee, A., Rana, K. P. S., et al., PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm, Swarm Evol. Comput., 2017, vol. 35, pp. 93–110.

    Article  Google Scholar 

  35. Lin, X. and Wu, Y., Parameter’s identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture, Energy, 2020, vol. 196, p. 117054.

    Article  Google Scholar 

  36. Liang, J., Qiao, K., Yuan, M., et al., Evolutionary multi-task optimization for parameters extraction of photovoltaic models, Energy Convers. Manage., 2020, vol. 207, p. 112509.

    Article  Google Scholar 

  37. Fan, Y., Wang, P., Heidari, A. A., Zhao, X., et al., Delayed dynamic step shuffling frog-leaping algorithm for optimal design of photovoltaic models, Energy Rep., 2021, vol. 7, pp. 228–246.

    Article  Google Scholar 

  38. Ye, X., Liu, W., Li, H., Wang, M., et al., Modified whale optimization algorithm for solar cell and PV module parameter identification, Complexity, 2021, vol. 2021.

  39. Liu, Y., Heidari, A. A., Ye, X., et al., Evolutionary shuffled frog leaping with memory pool for parameter optimization, Energy Rep., 2021, vol. 7, pp. 584–606.

    Article  Google Scholar 

  40. Wu, L., Chen, Z., Long, C., Cheng, S., et al., Parameter extraction of photovoltaic models from measured I–V characteristics curves using a hybrid trust-region reflective algorithm, Appl. Energy, 2018, vol. 232, pp. 36–53.

    Article  Google Scholar 

  41. Li, S., Gong, W., Yan, X., et al., Parameter estimation of photovoltaic models with mimetic adaptive differential evolution, Sol. Energy, 2019, vol. 190, pp. 465–474.

    Article  Google Scholar 

  42. Yu, K., Qu, B., Yue, C., Ge, S., et al., A performanceguided JAYA algorithm for parameters identification for photovoltaic cell and module, Appl. Energy, 2019, vol. 237, pp. 241–257.

    Article  Google Scholar 

  43. Chin, V.J. and Salam, Z., Coyote optimization algorithm for the parameter extraction of photovoltaic cells, Sol. Energy, 2019, vol. 194, pp. 656–670.

    Article  Google Scholar 

  44. Chen, H., Jiao, S., Heidari, A.A., et al., An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models, Energy Convers. Manage., 2019, vol. 195, pp. 927–942.

    Article  Google Scholar 

  45. Rezaee Jordehi, A., Enhanced leader particle swarm optimization (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules, Solar Energy, 2018, vol. 159, pp. 78–87.

    Article  Google Scholar 

  46. Ben Messaoud, R., Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization, Energy Rep., 2020, vol. 6, pp. 350–357.

    Article  Google Scholar 

  47. Gude, S. and Jana, K.C., Parameter extraction of photovoltaic cell using an improved cuckoo search ptimization, Sol. Energy, 2020, vol. 204, pp. 280–293.

    Article  Google Scholar 

  48. Li, S., Gong, W., Yan, X., Hu, C., et al., Parameter extraction of photovoltaic models using an improved teaching-learning based optimization, Energy Convers. Manage., 2019, vol. 86, pp. 293–305.

    Article  Google Scholar 

  49. Yu, K., Liang, J.J., Qu, B. Y., Cheng, Z., et al., Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Appl. Energy, 2018, vol. 226, pp. 408–422.

    Article  Google Scholar 

  50. Jian, X. and Weng, Z., A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models, Optik, 2020, vol. 203, p. 164041.

    Article  Google Scholar 

  51. Chin, V.J. and Salam, Z., A new three-point-based approach for the parameter extraction of photovoltaic cells, Appl. Energy, 2019, vol. 237, pp. 519–533.

    Article  Google Scholar 

  52. Beigi, A.M. and Maroosi, A., Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search algorithms, Sol. Energy, 2018, vol. 171, pp. 435–446.

    Article  Google Scholar 

  53. Abd Elaziz, M. and Oliva, D., Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm, Energy Convers. Manage., 2018, vol. 171, pp. 1843–1859.

    Article  Google Scholar 

  54. Calasan, M., Abdel Aleem, S.H.E., and Zobaa, A.F., On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function, Energy Convers. Manage., 2020, vol. 210, p. 112716.

    Article  Google Scholar 

  55. Orioli, A. and Di Gangi, A., A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data, Appl. Energy, 2013, vol. 102, pp. 1160–1177.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully thank National Renewable Energy Laboratory (NREL) for providing experimental data of Cocoa aSiMicro03036 PV module under various temperatures and irradiation levels. Aissa Hali: Conceptualization, Methodology, Software, Validation. Yamina Khlifi: Conceptualization, Methodology, Writing, Review and Editing, Formal analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aissa Hali.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hali, A., Khlifi, Y. Fast and Efficient Way of PV Parameters Estimation Based on Combined Analytical and Numerical Approaches. Appl. Sol. Energy 59, 135–151 (2023). https://doi.org/10.3103/S0003701X23700019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X23700019

Keywords.

Navigation