Skip to main content
Log in

Innovative Insights into Solar Drying of Kola Fish: Mechanisms, Modeling, and Optimization

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Solar drying is a method employed to expedite moisture reduction and enhance preservation capacity, characterized by intricate heat and mass transfer processes, challenging the micro-level description of drying kinetics. This study aims to optimize solar drying conditions for kola fish using a double slope solar dryer. An empirical investigation was conducted in three modes viz: open sun drying, natural convection solar dryer and forced convection solar drying. The research underscores the advantages of forced convection drying, showcasing a notable reduction of 4 h in drying time in comparison to natural convection. Furthermore, natural convection surpassed open sun drying, yielding an impressive 18-hour time-saving. An empirical model was formulated to establish the relationship between surface temperature and influential parameters, including insolation, air temperature, and ambient temperature. This model exhibited a high degree of reliability, featuring a correlation coefficient of 0.982 and a narrow standard deviation of 0.028, enabling precise surface temperature predictions under various conditions. The study delved into the effective moisture diffusivity range of kola fish, pinpointing it within the range of 5.16 × 10–9 to 5.29 ×10–8 m2/s. This understanding of intrinsic moisture migration during drying contributes to process optimization. Furthermore, the determination of the activation energy for kola fish drying, which ranged from 28.34 to 38.83 kJ/mol, elucidates the temperature-dependent nature of drying kinetics and underlying energy-driven mechanisms. These revelations significantly enhance the comprehension and advancement of controlled solar drying techniques for kola fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

DATA AVAILABILITY

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. Abila, R.O., Food safety in food security and food trade: Case study Kenya fish exports, FOCUS, 2003, vol. 2, p. 10.

    Google Scholar 

  2. Muthuvairavan, G. and Kumar Natarajan, S., Experimental study on drying kinetics and thermal modeling of drying Kohlrabi under different solar drying methods, Therm. Sci. Eng. Prog., 2023, vol. 44, p. 102074. https://doi.org/10.1016/j.tsep.2023.102074

    Article  Google Scholar 

  3. Arjun Singh, K., Muthuvairavan, G., and Natarajan, S.K., Numerical investigation of modified conical cavity receiver with different heat transfer fluids, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, vol. 45, pp. 6964–6980. https://doi.org/10.1080/15567036.2023.2218833

    Article  Google Scholar 

  4. Kituu, G.M., Shitanda, D., Kanali, C.L., Mailutha, J.T., Njoroge, C.K., Wainaina, J.K., and Silayo, V.K., Thin layer drying model for simulating the drying of Tilapia fish (Oreochromis niloticus) in a solar tunnel dryer, J. Food Eng., 2010, vol. 98, pp. 325–331. https://doi.org/10.1016/j.jfoodeng.2010.01.009

    Article  Google Scholar 

  5. Devi, M., Dutta, P.P., and Mohanta, D., Analytical calculation of chain length in ferrofluids, Bull. Mater. Sci., 2015, vol. 38, pp. 221–226. https://doi.org/10.1007/S12034-014-0812-9/METRICS

    Article  Google Scholar 

  6. Dutta, P., Dutta, P.P., Kalita, P., Goswami, P., and Choudhury, P.K., Energy analysis of a mixed-mode corrugated aluminium alloy (AlMn1Cu) plate solar air heater, Mater. Today: Proc., 2021, vol. 47, pp. 3352–3357. https://doi.org/10.1016/J.MATPR.2021.07.156

    Article  Google Scholar 

  7. Sharma, A. and Dutta, P.P., Energy, exergy, economic and environmental (4E) assessments of a tea withering trough coupled with a solar air heater having an absorber plate with Al-can protrusions, Int. J. Ambient Energy, 2022, vol. 43, pp. 8438–8450. .https://doi.org/10.1080/01430750.2022.2097950

    Article  Google Scholar 

  8. Dutta, P.P., Goswami, P., Sharma, A., Dutta, P.P., and Baruah, M.G., Computational performance analysis of the perforated and flat plates double pass solar air heaters, Lecture Notes in Mechanical Engineering, 2022, pp. 549–561. https://doi.org/10.1007/978-981-16-3497-0_44/COVER

    Book  Google Scholar 

  9. Akhatov, J.S., Samiev, K.A., Mirzaev, M.S., and Ibraimov, A.E., Study of the thermal technical characteristics of a combined solar desalination and drying plant, Appl. Sol. Energy, 2018, vol. 54, pp. 119–125. https://doi.org/10.3103/S0003701X18020032

    Article  Google Scholar 

  10. Goddard, J.S. and Al-Yahyai, D.S.S., Chemical and nutritional characteristics of dried sardine silage, J. Aquat. Food Prod. Technol., 2001, vol. 10, pp. 39–50.

    Article  Google Scholar 

  11. Kituu, G., Kanali, C., Shitanda, D., Njoroge, C., and Mailutha, J., Effect of genetic algorithm optimized solar tunnel dryer on the quality attributes of thin-layer dried fish, J. Aquat. Food Prod. Technol., 2016, vol. 25, pp. 555–567. https://doi.org/10.1080/10498850.2014.894601

    Article  Google Scholar 

  12. Obayopo, S.O. and Alonge, O.I., Development and quality analysis of a direct solar dryer for fish, Food Nutr. Sci., 2018, vol. 9, pp. 474–488. https://doi.org/10.4236/fns.2018.95037

    Article  Google Scholar 

  13. Nabnean, S. and Nimnuan, P., Experimental and modelling performances of a household solar dryer for drying banana, Appl. Sol. Energy, 2021, vol. 57, pp. 34–43. https://doi.org/10.3103/S0003701X21010059

    Article  Google Scholar 

  14. Nagwekar, N., Tidke, V., and Thorat, B.N., Microbial and biochemical analysis of dried fish and comparative study using different drying methods, Drying Technol., 2017, vol. 35, pp. 1–41. https://doi.org/10.1038/nmeth.3289

    Article  Google Scholar 

  15. Mehta, P., Samaddar, S., Patel, P., Markam, B., and Maiti, S., Design and performance analysis of a mixed mode tent-type solar dryer for fish-drying in coastal areas, Sol. Energy, 2018, vol. 170, pp. 671–681. https://doi.org/10.1016/j.solener.2018.05.095

    Article  Google Scholar 

  16. Jain, D., Determination of convective heat and mass transfer coefficients for solar drying of fish, Biosyst. Eng., 2006, vol. 94, pp. 429–435. https://doi.org/10.1016/j.biosystemseng.2006.04.006

    Article  Google Scholar 

  17. Chukwu, O., Influences of drying methods on nutritional properties of tilapia fish (Oreochromis nilotieus), World J. Agric. Sci., 2009, vol. 5, pp. 256–258.

    Google Scholar 

  18. Duan, Z.H., Jiang, L.N., Wang, J.L., Yu, X.Y., and Wang, T., Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating, Food Bioprod. Process., 2011, vol. 89, pp. 472–476. https://doi.org/10.1016/j.fbp.2010.11.005

    Article  Google Scholar 

  19. Rozainee, M. and Ng, P.S., Microwave assisted hot air convective dehydration of fish slice: Drying characteristics, energy aspects and colour assessment, Proceeding of the International Conference on Advanced Science, Engineering and Information Technology, 2011, pp. 42–45.

  20. Brás, A. and Costa, R., Influence of brine salting prior to pickle salting in the manufacturing of various salted-dried fish species, J. Food Eng., 2010, vol. 100, pp. 490–495. https://doi.org/10.1016/j.jfoodeng.2010.04.036

    Article  Google Scholar 

  21. Bala, B.K., and Mondol, M.R.A., Experimental investigation on solar drying of fish using solar tunnel dryer, Drying Technol., 2001, vol. 19, pp. 427–436. https://doi.org/10.1081/DRT-100102915

    Article  Google Scholar 

  22. Hubackova, A., Kucerova, I., Chrun, R., Chaloupkova, P., and Banout, J., Development of solar drying model for selected Cambodian fish species, Sci. World J., 2014, vol. 2014, pp. 1–10. https://doi.org/10.1155/2014/439431

    Article  Google Scholar 

  23. Hamdani, Rizal, T.A., and Muhammad, Z., Fabrication and testing of hybrid solar-biomass dryer for drying fish, Case Stud. Therm. Eng., 2018, vol. 12, pp. 489–496. https://doi.org/10.1016/j.csite.2018.06.008

    Article  Google Scholar 

  24. Ikrang, E.G., Whyte, A.A., Maurice, A.M., Akubuo, C.O., and Onwude, D.I., Design and fabrication of a direct passive solar dryer for tilapia fish filets, Acta Hortic., 2017, vol. 1152, pp. 63–69. https://doi.org/10.17660/ActaHortic.2017.1152.9

  25. Sultana, S., Shikha, M.N.I., Slam, and Kama, M., Drying performance of rotating and solar tunnel dryer for production of quality dried fish, Prog. Agric., 2009, vol. 1, pp. 173–181.

    Google Scholar 

  26. Biswas, P.K.O., Das, A., Pahan, S., and Swarup Singh, Fabrication and performance evaluation of improvised solar drier for preservation of fish, Int. J. Curr. Microbiol. Appl. Sci., 2018, vol. 7, pp. 3186–3194.

    Article  Google Scholar 

  27. Sengar, S.H., Khandetod, Y.P., and Mohod, A.G., Low cost solar dryer for fish, Sci. Technol., 2009, vol. 3, pp. 265–271.

    Google Scholar 

  28. Hantoro, R., Hepriyadi, S.U., Izdhiharrudin, M.F., and Amir, M.H., Solar dryer and photovoltaic for fish commodities (Case study in fishery community at Kenjeran Surabaya), AIP Conf. Proc., 2018, vol. 1977, no. 1, p. 060013. https://doi.org/10.1063/1.5043025

    Article  Google Scholar 

  29. Seveda, M.S., Performance studies of solar tunnel dryer for drying aonla (Embilica officinalis) pulp, Appl. Sol. Energy, 2012, vol. 48, pp. 104–111. https://doi.org/10.3103/S0003701X12020181

    Article  Google Scholar 

  30. Nukulwar, M.R., and Tungikar, V.B., Evaluation of drying model and quality analysis of turmeric using solar thermal system, Appl. Sol. Energy, 2020, vol. 56, pp. 233–241. https://doi.org/10.3103/S0003701X20040088

    Article  Google Scholar 

  31. Mugi, V.R., and Chandramohan, V.P., Drying kinetics of muskmelon slices and characteristics of an indirect solar dryer under natural and forced convection: A comparative study, Appl. Sol. Energy, 2022, vol. 58, pp. 829–846. https://doi.org/10.3103/S0003701X22060123

    Article  Google Scholar 

  32. Kokate, Y.D., Baviskar, P.R., and Nukulwar, M.R., mathematical modelling and drying kinetics of onion and garlic in indirect solar dryer, Appl. Sol. Energy, 2022, vol. 58, pp. 643–660. https://doi.org/10.3103/S0003701X22600941

    Article  Google Scholar 

  33. Dutta, P., Dutta, P.P., and Kalita, P., Thermal performance study of a PV-driven innovative solar dryer with and without sensible heat storage for drying of Garcinia pedunculata, Environ. Sci. Pollut. Res., 2023, pp. 1–21. https://doi.org/10.1007/S11356-023-27041-X

  34. Muthuvairavan, G., Manikandan, S., Elangovan, E., Natarajan, S.K., Muthuvairavan, G., Manikandan, S., Elangovan, E., and Natarajan, S.K., Assessment of solar dryer performance for drying different food materials: A comprehensive review, in Drying Science and Technology, IntechOpen, 2023. https://doi.org/10.5772/INTECHOPEN.112945

    Book  Google Scholar 

  35. Natarajan, S.K. and Elavarasan, E., Experimental investigation of drying potato for Karaikal climatic condition, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 312, pp. 1–7. https://doi.org/10.1088/1755-1315/312/1/012021

  36. Kumar Natarajan, S., Sankaranarayanasamy, K., Ponnusamy, S., Kavya Chowdary, V., Kumar, J., Rahul, D., Agarwal, S., and Elavarasan, E., Experimental comparative study on reduction in the moisture content of cucumber in a double slope solar dryer with open sun drying method, J. Phys.: Conf. Ser., 2019, vol. 1276, pp. 1–6. https://doi.org/10.1088/1742-6596/1276/1/012054

    Article  Google Scholar 

  37. Karthikeyan, A.K., and Natarajan, R., Exergy analysis and mathematical modelling of orange peels drying in a mixed mode solar tunnel dryer and under the open sun: A study on performance enhancement, Int. J. Exergy, 2017, vol. 24, pp. 235–253. https://doi.org/10.1504/IJEX.2017.087695

    Article  Google Scholar 

  38. Gürel, A.E., Ceylan, I., and Yilmaz, S., Thermodynamic analysis of PID controlled fluidized bed dryer with parabolic trough collector, Int. J. Exergy, 2015, vol. 18, pp. 68–83. https://doi.org/10.1504/IJEX.2015.072057

    Article  Google Scholar 

  39. Panwar, N.L., Energetic and exergetic analysis of walk-in type solar tunnel dryer for Kasuri Methi (Fenugreek) leaves drying, Int. J. Exergy, 2014, vol. 14, pp. 519–531. https://doi.org/10.1504/IJEX.2014.062926

    Article  Google Scholar 

  40. Gilago, M.C., and Chandramohan, V.P., Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd, Energy, 2022, vol. 252, p. 123998. https://doi.org/10.1016/j.energy.2022.123998

    Article  Google Scholar 

  41. Gilago, M.C., Mugi, V.R., Chandramohan, V.P., and Suresh, S., Evaluating the performance of an indirect solar dryer and drying parameters of pineapple: Comparing natural and forced convection, J. Therm. Anal. Calorim., 2023, vol. 148, pp. 3701–3709. https://doi.org/10.1007/s10973-023-11955-2

    Article  Google Scholar 

  42. Crank, J., The Mathematics of Diffusion, Oxford: Oxford Univ. Press, 1975, 2nd ed., pp. 104–106.

    Google Scholar 

  43. Doymaz, I., Air-drying characteristics of tomatoes, J. Food Eng., 2007, vol. 78, pp. 1291–1297. https://doi.org/10.1016/j.jfoodeng.2005.12.047

    Article  Google Scholar 

  44. Aghbashlo, M., Kianmehr, M.H., and Samimi-Akhijahani, H., Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae), Energy Convers. Manage., 2008, vol. 49, pp. 2865–2871. https://doi.org/10.1016/j.enconman.2008.03.009

    Article  Google Scholar 

  45. Elangovan, E. and Natarajan, S.K., Effects of pretreatments on quality attributes, moisture diffusivity, and activation energy of solar dried ivy gourd, J. Food Process Eng., 2021, vol. 44, pp. 1–14. https://doi.org/10.1111/jfpe.13653

    Article  Google Scholar 

  46. M.A. Eleiwi, M.F. Mohammed, and K.T. Kamil, Experimental analysis of thermal performance of a solar air heater with a flat plate and metallic fiber, J. Eng. Sci. Technol., 2022, vol. 17, pp. 2049–2066.

    Google Scholar 

  47. Mohammed, M.F., Eleiwi, M.A., and Kamil, K.T., Experimental investigation of thermal performance of improvement a solar air heater with metallic fiber, Energy Sources A: Recovery, Utiliz. Environ. Effects., 2021, vol. 43, pp. 2319–2338. https://doi.org/10.1080/15567036.2020.1833110

    Article  Google Scholar 

  48. Elangovan, E. and Natarajan, S.K., Experimental research of drying characteristic of red banana in a single slope direct solar dryer based on natural and forced convection, Food Technol. Biotechnol., 2021, vol. 59, pp. 137–146. https://doi.org/10.17113/FTB.59.02.21.6876

    Article  Google Scholar 

  49. Suraparaju, S.K., Sampathkumar, A., and Natarajan, S.K., Development of paraffin wax and used cooking oil based composite thermal energy storage for efficient potable water generation in a solar distillation unit, J. Energy Storage, 2023, vol. 69, p. 107856. https://doi.org/10.1016/j.est.2023.107856

    Article  Google Scholar 

  50. Bhardwaj, A.K., Kumar, R., Kumar, S., Goel, B., and Chauhan, R., Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM, Sustainable Energy Technol. Assess., 2021, vol. 45, p. 101119. https://doi.org/10.1016/j.seta.2021.101119

    Article  Google Scholar 

  51. Sharma, A. and Dutta, P.P., Performance studies of low temperature solar drying of fresh tea leaves (Camellia assamica), Appl. Sol. Energy, 2022, vol. 58, pp. 423–432. https://doi.org/10.3103/S0003701X22030161

    Article  Google Scholar 

  52. Prakash, O., Kumar, A., and Laguri, V., Performance of modified greenhouse dryer with thermal energy storage, Energy Rep., 2016, vol. 2, pp. 155–162. https://doi.org/10.1016/j.egyr.2016.06.003

    Article  Google Scholar 

  53. Sharma, A. and Dutta, P.P., Exergy analysis of a solar thermal energy powered tea withering trough, Mater. Today: Proc., 2021, vol. 47, pp. 3123–3128. https://doi.org/10.1016/J.MATPR.2021.06.181

    Article  Google Scholar 

  54. Kumar, P.S., Nambi, E., Shiva, K.N., Vaganan, M.M., Ravi, I., Jeyabaskaran, K.J., and Uma, S., Thin layer drying kinetics of Banana var. Monthan (ABB): Influence of convective drying on nutritional quality, microstructure, thermal properties, color, and sensory characteristics, J. Food Process Eng., 2019, vol. 42, pp. 1–12. https://doi.org/10.1111/jfpe.13020

    Article  Google Scholar 

  55. Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., and Abdan, K., Modeling the thin-layer drying of fruits and vegetables: A review, Compr. Rev. Food Sci. Food Saf., 2016, vol. 15, pp. 599–618. https://doi.org/10.1111/1541-4337.12196

    Article  Google Scholar 

  56. Elavarasan, E., Kumar, Y., Mouresh, R., and Natarajan, S.K., Study of drying kinetics of tomato in a solar dryer, in Current Advances in Mechanical Engineering, Singapore: Springer, 2021, pp. 349–358. https://doi.org/10.1007/978-981-33-4795-3_33

    Book  Google Scholar 

  57. Kaveh, M., Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Taghinezhad, E., and Moghimi, M.B.F., The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network, J. Food Process Eng., 2018, vol. 41, pp. 1–14. https://doi.org/10.1111/jfpe.12868

    Article  Google Scholar 

  58. Elangovan, E. and Natarajan, S.K., Experimental study on drying kinetics of ivy gourd using solar dryer, J. Food Process Eng., 2021, vol. 44, pp. 1–39. https://doi.org/10.1111/jfpe.13714

    Article  Google Scholar 

  59. Elangovan, E. and Natarajan, S.K., Experimental research of drying characteristics of red banana in a single slope solar dryer based on natural and forced convection, Food Technol. Biotechnol., 2021, vol. 59, no. 2, pp. 137–146. https://doi.org/10.17113/ftb.59.02.21.6876

    Article  Google Scholar 

  60. Bhanu, A.S., Elavarasan, E., Natarajan, S.K., Anandu, A., and Senin, H.M., Experimental investigation of drying kinetics of poovan banana under forced convection solar drying, in, Current Advances in Mechanical Engineering, Singapore: Springer, 2021, pp. 621–631. https://doi.org/10.1007/978-981-33-4795-3_56

    Book  Google Scholar 

  61. Kar, A. and Gupta, D., Studies on air-drying of osmosed button mushroom, J. Food Sci. Technol., 2003, vol. 4, pp. 23–27.

    Google Scholar 

  62. Singh, U., Jain, S.K., Doshi, A., Jain, H.K., and Chahar, V.K., Effects of pretreatments on drying characteristics of button mushroom, Int. J. Food Eng., 2008, vol. 4, pp. 1–21. https://doi.org/10.2202/1556-3758.1179

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbarama Kousik Suraparaju.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, S.K., Muthuvairavan, G., Suraparaju, S.K. et al. Innovative Insights into Solar Drying of Kola Fish: Mechanisms, Modeling, and Optimization. Appl. Sol. Energy 59, 887–902 (2023). https://doi.org/10.3103/S0003701X23601369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X23601369

Keywords:

Navigation