Abstract
This paper presents studies of the optical-energy characteristics of a parabolic solar collector for production of thermal energy for heating a building. The results of calculations, three-dimensional and topological distribution of energy in the focal zone of a solar concentrator with a diameter of 6.36 m installed at the Institute of Materials Science, Academy of Sciences of the Republic of Uzbekistan are presented. A mathematical model of the thermal regime of a solar concentrator is proposed, calculations are carried out to determine the operating temperature and the efficiency of the receiver. For efficient conversion of concentrated solar radiation, a receiver was developed from a solid copper pipe with a diameter of 12 mm in the form of a single cylindrical spiral. The outlet diameter of such a receiver was D = 200 mm. To reduce the loss from the outside, the receiver is covered with asbestos material and cement with a thickness of 20 mm. The degree of geometric concentration of the solar concentrator is 2126; the power is 18.03 kW at 800 W/m2 of solar radiation. Calculations show that the average daily thermal efficiency of the concentrator across the seasons of the year remains high (over 25%), and the system can also be operated for heating buildings.
This is a preview of subscription content, access via your institution.








REFERENCES
Zakhidov, R.A., Zerkal’nye sistemy kontsentratsii luchistoi energii (Mirror Systems for Concentrating Radiant Energy), Tashkent: FAN, 1986.
Klychev, Sh.I., Modeling of receiving and concentrating devices of solar thermal power plants, Doctoral (Eng.) Dissertation, Tashkent, 2004.
Baum, I.V., Formation of the receiver irradiance field in “accurate” and “inaccurate” helioconcentrators, in Solnechnye energeticheskie ustanovki (Solar Power Plants), Moscow: ENIN, 1974.
Abdurakhmanov, A.A. Akhadov, Zh.Z., et al., Concentrating systems and determination of optimal parameters of the light-receiving surface, Appl. Sol. Energy, 2004, vol. 40, no. 3, p 39.
Basem, A., Moawed, M., Abbood, M.H., et al., The design of a hybrid parabolic solar dish–steam power plant: An experimental study, Energy Rep., 2022, vol. 8, pp. 1949–1965.
Li, Z., Tang, J., Du, D., and Li, T., Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility, Appl. Therm. Eng., 2011, vol. 31, no. 10, pp. 1780–1789. https://doi.org/10.1016/j.applthermaleng.2011.02.023
Stine, W.B. and Harrigan, R.W., Solar Energy Fundamentals and Design, New York: Wiley Interscience, 1985.
Li, S., Xu, X., Luo, Y., Quan, G., Ge, Y., Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver, Energy, 2016, vol. 113, pp. 95–107. https://doi.org/10.1016/j.energy.2016.06.143
Knysh, L., Modeling of energy characteristics of parabolic concentrators based on Monte Carlo ray tracing method, Appl. Sol. Energy, 2021, vol. 57, pp. 413–419. https://doi.org/10.3103/S0003701X2105008X
Knysh, L. Estimation of energy parameters of a solar thermophotovoltaic plant with parabolic-cylindrical concentrator, Appl. Sol. Energy, 2020, vol. 56, pp. 490–497. https://doi.org/10.3103/S0003701X20060055
Knysh, L.I., Verification of the numerical algorithm for parameter analysis of the tube heat receiver of the solar parabolic trough system, Appl. Sol. Energy, 2019, vol. 55, pp. 340–346. https://doi.org/10.3103/S0003701X19050074
Avezova, N.R., Avezov, R.R., Samiev, K.A., et al., Comparative heating performance and engineering economic indicators of the “Trombe Wall” system in different climate zones of Uzbekistan, Appl. Sol. Energy, 2021, vol. 57, pp. 128–134. https://doi.org/10.3103/S0003701X21020031
Xing Li, Li, X., and Akhatov, J.S., Feasibility and performance study of solar combined heat and power system with absorption heat pump in Uzbekistan, Appl. Sol. Energy, 2020, vol. 56, pp. 498–507. https://doi.org/10.3103/S0003701X20060067
Liao, T. and Lin, J., Optimum performance characteristics of a solar-driven Stirling heat engine system, Energy Convers. Manage., 2015, vol. 97, pp. 20–25. https://doi.org/10.1016/j.enconman.2015.03.027
Chen, K. and Chun, W., Radiation energy transfer and maximum conversion efficiency, Appl. Energy, 2009, vol. 86, no. 10, pp. 2268–2271.
Zayed, M., Zhao, Y., Du, A., Kabeel, J., Shalaby, S., Factors affecting the thermal perfor-mance of the flat plate solar collector using nanofluids: A review, Sol. Energy, 2019a, vol. 182, pp. 382–396. https://doi.org/10.1016/j.solener.2019.02.054
NREL. Concentrating Solar Power. https://www.nrel.gov/csp/soltrace.html.
Zayed, M.E., Zhao, A.H., Elsheikh, F.A., Hammad, L., Ma, Y., Du, A., Kabeel, S.M., Shalaby, J., Applications of cascaded phase change materials in solarwater collector storage tanks: A review, Sol. Energy Mater. Sol. Cells, 2019b, vol. 199, pp. 24–49. https://doi.org/10.1016/j.solmat.2019.04.018
Steinfeld, A. and Schubnell, M., Optimum aperture size and operating temperature of a solar cavity-receiver, Sol. Energy, 1993, vol. 50, pp. 19–25.
Mancini, T.R., Solar-electric dish Stirling system development, Proceedings of the 4th European Stirling Forum, Osnabruck, Germany, 1998.
Mendoza Castellanos, L.S., Carrillo Caballero, G.E., Melian Cobas, V.R., Silva Lora, E.E., and Martinez Reyes, A.M., Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation, Renewable Energy, 2017, vol. 107, pp. 23–35.
Carrillo Caballero, G.E., Mendoza, L.S., Martinez, A.M., Silva, E.E., Melian, V.R., Venturini, O.J., and del Olmo, O.A., Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques, Appl. Energy, 2017, vol. 204, pp. 271–286.
Nauchno-prikladnoi spravochnik po klimatu, Seriya 3, Mnogoletnie dannye, chasti 1–6, Vypusk 19, Uzbekistan, kniga 1 (Scientific and Applied Reference Book on Climate, Ser. 3, Long-term Data, Parts 1–6, Iss. 19, Uzbekistan, book 1), Leningrad: Gidrometeoizdat, 1989.
KMK 2.01.01-94: Climatic and Physical-Geological Data for Design, Tashkent, 1994.
ShNK 2.01.01-22: Climatic and Physical-Geological Data for Design, Tashkent, 2022.
ACKNOWLEDGMENTS
The author expresses his gratitude to the scientists of the Institute of Materials Science, Academy of Sciences of the Republic of Uzbekistan, as well as the Physical-Technical Institute, Academy of Sciences of the Republic of Uzbekistan, for their help in discussing the results of scientific research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by M. Chubarova
About this article
Cite this article
Akhadov, J.Z. Study of the Performance Characteristics of a Solar Concentrator for Production of Thermal Energy. Appl. Sol. Energy 59, 169–175 (2023). https://doi.org/10.3103/S0003701X23600765
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S0003701X23600765