Skip to main content
Log in

Evolution of Solar Drying Technology—A Mini-Review

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The increasing food demand, decreasing fossil fuels, expanding population and degrading environment are the drivers leading towards development in sustainable processing and storage of agricultural products. The lack of agro production and the wastage in post-processing has pulled the eyes towards sustainable storage solutions. Drying is an ancient process used to remove moisture from the harvested products. Several researchers have performed various experiments to intervene in new technology in the field of drying. The aims are to review the recent development occurring in drying technology. Waste energy recovery system coupled with solar dryer shows very good potential, while its application is more complex than solar drying. Hybrid system focuses on reducing the time of drying. The secondary source of heat was either an LPG heater or an electric heater, but its availability around various regions is still a challenge. Phase change material in solar drying technology can provide a desirable solution to post-harvesting problems. Currently the use of solar thermal energy into industrial drying processes is just to improve efficiency, reduce energy consumption, and lessen environmental impact. Economic aspects of the solar drying technology is very important for implementation of the systems. This article will help the policymaker and the researchers to make framework for energy policies in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

REFERENCES

  1. Dutta, P.P., et al., Modeling and performance evaluation of a small solar parabolic trough collector (PTC) for possible purification of drained water, Mater. Today Proc., 2021, vol. 47, pp. 4226–4234. https://doi.org/10.1016/j.matpr.2021.04.489

    Article  Google Scholar 

  2. Sharma, A., Tyagi, V.V., Chen, C.R., and Buddhi, D., Review on thermal energy storage with phase change materials and applications, Renewable Sustainable Energy Rev., 2009, vol. 13, no. 2, pp. 318–345. https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  3. Wu, W., Chou, S.-C., and Viswanathan, K., Optimal dispatching of smart hybrid energy systems for addressing a low-carbon community, Energies (Basel), 2023, vol. 16, no. 9, p. 3698. https://doi.org/10.3390/en16093698

    Article  Google Scholar 

  4. Devi, M., Dutta, P.P., and Mohanta, D., Analytical calculation of chain length in ferrofluids, Bull. Mater. Sci., 2015, vol. 38, no. 1, pp. 221–226. https://doi.org/10.1007/s12034-014-0812-9

    Article  Google Scholar 

  5. Kamble, A.K., Kalbande, S.R., Deshmukh, M., and Gadge, S.R., Solar drying system for energy conservation, Appl. Sol. Energy, 2011, vol. 47, no. 2, pp. 124–133. https://doi.org/10.3103/S0003701X11020101

    Article  Google Scholar 

  6. Dutta, P., Dutta, P.P., Kalita, P., Goswami, P., and Choudhury, P.K., Energy analysis of a mixed-mode corrugated aluminium alloy (AlMn1Cu) plate solar air heater, Mater. Today Proc., 2021, vol. 47, pp. 3352–3357. https://doi.org/10.1016/j.matpr.2021.07.156

    Article  Google Scholar 

  7. Kant, K., Shukla, A., Sharma, A., Kumar, A., and Jain, A., Thermal energy storage based solar drying systems: A review, Innovative Food Sci. Emerging Technol., 2016, vol. 34, pp. 86–99. https://doi.org/10.1016/j.ifset.2016.01.007

    Article  Google Scholar 

  8. Dutta, P.P., Goswami, P., Sharma, A., Dutta, P.P., and Baruah, M.G., Computational performance analysis of the perforated and flat plates double pass solar air heaters, in Advances in Thermofluids and Renewable Energy, 2022, pp. 549–561. https://doi.org/10.1007/978-981-16-3497-0_44

  9. Rathore, N.S., and Panwar, N.L., Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying, Appl. Sol. Energy, 2009, vol. 45, no. 4, pp. 269–273. https://doi.org/10.3103/S0003701X09040100

    Article  Google Scholar 

  10. Das, S., Das, T., Srinivasa Rao, P., and Jain, R.K., Development of an air recirculating tray dryer for high moisture biological materials, J. Food Eng., 2001, vol. 50, no. 4, pp. 223–227. https://doi.org/10.1016/S0260-8774(01)00024-3

    Article  Google Scholar 

  11. Lewicki, P.P., Design of hot air drying for better foods, Trends Food Sci. Technol., 2006, vol. 17, no. 4, pp. 153–163. https://doi.org/10.1016/j.tifs.2005.10.012

    Article  Google Scholar 

  12. Nabnean, S., and Nimnuan, P., Experimental and modelling performances of a household solar dryer for drying banana, Appl. Sol. Energy, 2021, vol. 57, no. 1, pp. 34–43. https://doi.org/10.3103/S0003701X21010059

    Article  Google Scholar 

  13. Kudra, T., Energy performance of convective dryers, Drying Technol., 2012, vol. 30, nos. 11–12, pp. 1190–1198. https://doi.org/10.1080/07373937.2012.690803

    Article  Google Scholar 

  14. Altobelli, F., Condorí, M., Duran, G., and Martinez, C., Solar dryer efficiency considering the total drying potential. Application of this potential as a resource indicator in north-western Argentina, Sol. Energy, 2014, vol. 105, pp. 742–759. https://doi.org/10.1016/j.solener.2014.04.029

    Article  Google Scholar 

  15. Lamidi, R.O., Jiang, L., Pathare, P.B., Wang, Y.D., and Roskilly, A.P., Recent advances in sustainable drying of agricultural produce: A review, Appl. Energy, 2019, vols. 233–234, pp. 367–385. https://doi.org/10.1016/j.apenergy.2018.10.044

    Article  Google Scholar 

  16. Kumari, M., Kumar, R., and Tiwari, S., A review on solar photovoltaic system efficiency improving technologies, Appl. Sol. Energy, 2022, vol. 58, no. 1, pp. 54–75. https://doi.org/10.3103/S0003701X22010108

    Article  Google Scholar 

  17. Jiang, L., Wang, L.W., Wang, R.Z., Gao, P., and Song, F.P., Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer, Energy, 2014, vol. 71, pp. 377–387. https://doi.org/10.1016/j.energy.2014.04.078

    Article  Google Scholar 

  18. Dutta, P.P., Kakati, H., Bardalai, M., and Dutta, P.P., Performance studies with trapezoidal, sinusoidal and square corrugated aluminium alloy (AlMn1Cu) plate ducts, in Modeling, Simulation and Optimization: Proceedings of CoMSO 2020, 2021, pp. 751–774. https://doi.org/10.1007/978-981-15-9829-6_59

    Article  Google Scholar 

  19. Cacua, K., Olmos-Villalba, L., Herrera, B., and Gallego, A., Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling, Appl. Therm. Eng., 2016, vol. 100, pp. 762–767. https://doi.org/10.1016/j.applthermaleng.2016.02.067

    Article  Google Scholar 

  20. Sivakumar, R., Elayaperumal, A., and Saravanan, R., Studies on combined cooling and drying of agro products using air cooled internal heat recovered vapour absorption system, Appl. Therm. Eng., 2016, vol. 97, pp. 100–108. https://doi.org/10.1016/j.applthermaleng.2015.10.045

    Article  Google Scholar 

  21. Li, H., Chen, Q., Zhang, X., Finney, K.N., Sharifi, V.N., and Swithenbank, J., Evaluation of a biomass drying process using waste heat from process industries: A case study, Appl. Therm. Eng., 2012, vol. 35, no. 1, pp. 71–80. https://doi.org/10.1016/j.applthermaleng.2011.10.009

    Article  Google Scholar 

  22. Basunia, M.A., and Abe, T., Performance study of a small engine waste heated bin dryer in deep bed drying of paddy, Agric. Eng. Int.: CIGR Ejournal, 2008, vol. X, pp. 1–11.

    Google Scholar 

  23. Akhter, M.S., Nabi, M.N., and Afroz, Z., Recovery of waste heat from engine exhaust for utilization in a paddy dryer, Proceeding of International Conference on Mechanical Engineering (ICME), Tehran, Iran, 2007, pp. 29–31. https://scholar.google.com.au/scholar? hl=en&as_sdt=0,5&cluster=8005967815260510354.

    Google Scholar 

  24. Luo, X., Wang, Y., Zhao, J., Chen, Y., Mo, S., and Gong, Y., Grey relational analysis of an integrated cascade utilization system of geothermal water, Int. J. Green Energy, 2016, vol. 13, no. 1, pp. 14–27. https://doi.org/10.1080/15435075.2014.896259

    Article  Google Scholar 

  25. Sandali, M., Boubekri, A., Mennouche, D., and Gherraf, N., Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study, Renewable Energy, 2019, vol. 135, pp. 186–196. https://doi.org/10.1016/j.renene.2018.11.086

    Article  Google Scholar 

  26. Chandrasekar, M., Senthilkumar, T., Kumaragurubaran, B., and Fernandes, J.P., Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate, Renewable Energy, 2018, vol. 122, pp. 375–381. .https://doi.org/10.1016/j.renene.2018.01.109

    Article  Google Scholar 

  27. Mezrhab, A., Elfarh, L., Naji, H., and Lemonnier, D., Computation of surface radiation and natural convection in a heated horticultural greenhouse, Appl. Energy, 2010, vol. 87, no. 3, pp. 894–900. https://doi.org/10.1016/j.apenergy.2009.05.017

    Article  Google Scholar 

  28. Sharma, A., and Dutta, P.P., Exergy analysis of a solar thermal energy powered tea withering trough, Mater. Today Proc., 2021, vol. 47, pp. 3123–3128. https://doi.org/10.1016/j.matpr.2021.06.181

    Article  Google Scholar 

  29. Bardalai, M., Das, B., Dutta, P., and Mahapatra, S., Thermal performance study of bamboo and coal co-gasification in a downdraft gasifier, in Modeling, Simulation and Optimization: Proceedings of CoMSO 2020, 2021, pp. 15–28. https://doi.org/10.1007/978-981-15-9829-6_2

    Article  Google Scholar 

  30. Wu, W., Taipabu, M.I., Chang, W.-C., Viswanathan, K., Xie, Y.-L., and Kuo, P.-C., Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands, Renewable Energy, 2022, vol. 196, pp. 707–719. https://doi.org/10.1016/j.renene.2022.07.007

    Article  Google Scholar 

  31. López-Vidaña, E.C., Méndez-Lagunas, L.L., and Rodríguez-Ramírez, J., Efficiency of a hybrid solar-gas dryer, Sol. Energy, 2013, vol. 93, pp. 23–31. https://doi.org/10.1016/j.solener.2013.01.027

    Article  Google Scholar 

  32. Misha, S., Mat, S., Ruslan, M.H., Salleh, E., and Sopian, K., Performance of a solar assisted solid desiccant dryer for kenaf core fiber drying under low solar radiation, Sol. Energy, 2015, vol. 112, pp. 194–204. https://doi.org/10.1016/j.solener.2014.11.029

    Article  Google Scholar 

  33. Ceylan, I., Gürel, A.E., Ergün, A., and Tabak, A., Performance analysis of a concentrated photovoltaic and thermal system, Sol. Energy, 2016, vol. 129, pp. 217–223. https://doi.org/10.1016/j.solener.2016.02.010

    Article  Google Scholar 

  34. Mokhtarian, M., Tavakolipour, H., and Kalbasi Ashtari, A., Effects of solar drying along with air recycling system on physicochemical and sensory properties of dehydrated pistachio nuts, LWT Food Sci. Technol., 2017, vol. 75, pp. 202–209. https://doi.org/10.1016/j.lwt.2016.08.056

    Article  Google Scholar 

  35. Yassen, T.A., and Al-Kayiem, H.H., Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recovery dryer, Sol. Energy, 2016, vol. 134, pp. 284–293. https://doi.org/10.1016/j.solener.2016.05.011

    Article  Google Scholar 

  36. Gudiño-Ayala, D. and Calderón-Topete, Á., Pineapple drying using a new solar hybrid dryer, Energy Procedia, 2014, vol. 57, pp. 1642–1650. https://doi.org/10.1016/j.egypro.2014.10.155

    Article  Google Scholar 

  37. Amer, B.M. A., Hossain, M.A., and Gottschalk, K., Design and performance evaluation of a new hybrid solar dryer for banana, Energy Convers. Manage., 2010, vol. 51, no. 4, pp. 813–820. https://doi.org/10.1016/j.enconman.2009.11.016

    Article  Google Scholar 

  38. Saravanan, D., Wilson, V.H., and Kumarasamy, S., Design and thermal performance of the solar biomass hybrid dryer for cashew drying, Facta Universitatis Series: Mechanical Engineering, 2014, vol. 12, no. 3, pp. 277–288.

    Google Scholar 

  39. Hossain, M.A., Amer, B.M. A., and Gottschalk, K., Hybrid solar dryer for quality dried tomato, Drying Technol., 2008, vol. 26, no. 12, pp. 1591–1601. https://doi.org/10.1080/07373930802467466

    Article  Google Scholar 

  40. Tarigan, E., Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage, Case Stud. Therm. Eng., 2018, vol. 12, pp. 149–165. https://doi.org/10.1016/j.csite.2018.04.012

    Article  Google Scholar 

  41. Mehran, S., Nikian, M., Ghazi, M., Zareiforoush, H., and Bagheri, I., Experimental investigation and energy analysis of a solar-assisted fluidized-bed dryer including solar water heater and solar-powered infrared lamp for paddy grains drying, Sol. Energy, 2019, vol. 190, pp. 167–184. https://doi.org/10.1016/j.solener.2019.08.002

    Article  Google Scholar 

  42. Murali, S., Amulya, P.R., Alfiya, P.V., Delfiya, D.S.A., and Samuel, M.P., Design and performance evaluation of solar-LPG hybrid dryer for drying of shrimps, Renewable Energy, 2020, vol. 147, pp. 2417–2428. https://doi.org/10.1016/j.renene.2019.10.002

    Article  Google Scholar 

  43. Bosomtwe, A., et al., Effectiveness of the solar biomass hybrid dryer for drying and disinfestation of maize, J. Stored Prod. Res., 2019, vol. 83, pp. 66–72. https://doi.org/10.1016/j.jspr.2019.05.011

    Article  Google Scholar 

  44. Fang, X.-M., et al., Performance assessment of an evacuated tube solar-electric hybrid dryer for lotus seeds drying: Moisture removal behavior, GHG emission and thermodynamic analysis, J. Cleaner Prod., 2023, vol. 406, p. 136972. https://doi.org/10.1016/j.jclepro.2023.136972

    Article  Google Scholar 

  45. Atalay, H. and Aslan, V., Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer, Renewable Energy, 2023, vol. 209, pp. 218–230. https://doi.org/10.1016/j.renene.2023.03.137

    Article  Google Scholar 

  46. Afzal, A., et al., Development of a hybrid mixed-mode solar dryer for product drying, Heliyon, 2023, vol. 9, no. 3, p. e14144. https://doi.org/10.1016/j.heliyon.2023.e14144

    Article  Google Scholar 

  47. Dutta, P., Dutta, P.P., and Kalita, P., Thermal performance study of a PV-driven innovative solar dryer with and without sensible heat storage for drying of Garcinia pedunculata, in Environmental Science and Pollution Research, 2023. https://doi.org/10.1007/s11356-023-27041-x

  48. Sharma, A., and Dutta, P.P., Performance studies of low temperature solar drying of fresh tea leaves (Camellia assamica), Appl. Sol. Energy, 2022, vol. 58, no. 3, pp. 423–432. https://doi.org/10.3103/S0003701X22030161

    Article  Google Scholar 

  49. Nurmatov, S., Xia, H., and Huang, Q., The multicomponent heat storage nanofluid with phase change behaviour for solar power stations, Appl. Sol. Energy, 2022, vol. 58, no. 4, pp. 551–558. .https://doi.org/10.3103/S0003701X22040144

    Article  Google Scholar 

  50. Jain, D. and Tewari, P., Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage, Renewable Energy, 2015, vol. 80, pp. 244–250. https://doi.org/10.1016/j.renene.2015.02.012

    Article  Google Scholar 

  51. Pati, J.R., Hotta, S.K., and Mahanta, P., Effect of waste heat recovery on drying characteristics of sliced ginger in a natural convection dryer, Procedia Eng., 2015, vol. 105, pp. 145–152. https://doi.org/10.1016/j.proeng.2015.05.050

    Article  Google Scholar 

  52. Vásquez, J., Reyes, A., and Pailahueque, N., Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system, Renewable Energy, 2019, vol. 139, pp. 1375–1390. https://doi.org/10.1016/j.renene.2019.02.085

    Article  Google Scholar 

  53. Lakshmi, D.V. N., Muthukumar, P., Layek, A., and Nayak, P.K., Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage, Renewable Energy, 2018, vol. 120, pp. 23–34. https://doi.org/10.1016/j.renene.2017.12.053

    Article  Google Scholar 

  54. Reyes, A., Mahn, A., and Vásquez, F., Mushrooms dehydration in a hybrid-solar dryer, using a phase change material, Energy Convers. Manage., 2014, vol. 83, pp. 241–248. https://doi.org/10.1016/j.enconman.2014.03.077

    Article  Google Scholar 

  55. Shalaby, S.M. and Bek, M.A., Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium, Energy Convers. Manage., 2014, vol. 83, pp. 1–8. https://doi.org/10.1016/j.enconman.2014.03.043

    Article  Google Scholar 

  56. Swami, V.M., Autee, A.T., and Anil, T.R., Experimental analysis of solar fish dryer using phase change material, J. Energy Storage, 2018, vol. 20, no. 669, pp. 310–315. https://doi.org/10.1016/j.est.2018.09.016

    Article  Google Scholar 

  57. Shringi, V., Kothari, S., and Panwar, N.L., Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage, J. Therm. Anal. Calorim., 2014, vol. 118, no. 1, pp. 533–539. https://doi.org/10.1007/s10973-014-3991-0

    Article  Google Scholar 

  58. Madhankumar, S., Viswanathan, K., Wu, W., and Ikhsan Taipabu, M., Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization, Sol. Energy, 2023, vol. 249, pp. 667–683. https://doi.org/10.1016/j.solener.2022.12.009

    Article  Google Scholar 

  59. Madhankumar, S. and Viswanathan, K., Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device, Appl. Energy, 2022, vol. 324, p. 119746. https://doi.org/10.1016/j.apenergy.2022.119746

    Article  Google Scholar 

  60. Madhankumar, S., Viswanathan, K., and Wu, W., Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material, Renewable Energy, 2021, vol. 176, pp. 280–294. https://doi.org/10.1016/j.renene.2021.05.085

    Article  Google Scholar 

  61. Sharma, A. and Dutta, P.P., Energy, exergy, economic and environmental (4E) assessments of a tea withering trough coupled with a solar air heater having an absorber plate with Al-can protrusions, Int. J. Ambient Energy, 2022, vol. 43, no. 1, pp. 8438–8450. https://doi.org/10.1080/01430750.2022.2097950

    Article  Google Scholar 

  62. Lamrani, B., Khouya, A., and Draoui, A., Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software, Sol. Energy, 2019, vol. 183, pp. 132–145. https://doi.org/10.1016/j.solener.2019.03.014

    Article  Google Scholar 

  63. Singh, M. and Sethi, V.P., On the design, modelling and analysis of multi-shelf inclined solar cooker-cum-dryer, Sol. Energy, 2018, vol. 162, pp. 620–636. https://doi.org/10.1016/j.solener.2018.01.045

    Article  Google Scholar 

  64. El Hallaoui, Z., El Hamdani, F., Vaudreuil, S., Bounahmidi, T., and Abderafi, S., Identifying the optimum operating conditions for the integration of a solar loop to power an industrial flash dryer: Combining an exergy analysis with genetic algorithm optimization, Renewable Energy, 2022, vol. 191, pp. 828–841. https://doi.org/10.1016/j.renene.2022.04.072

    Article  Google Scholar 

  65. Hussain, M.I. and Lee, G.H., Concentrated solar powered agricultural products dryer: Energy, exergoeconomic and exergo-environmental analyses, J. Cleaner Prod., 2023, vol. 393, p. 136162. https://doi.org/10.1016/j.jclepro.2023.136162

    Article  Google Scholar 

  66. Silpa, V., et al., Influence of refrigerated adsorption dehumidified drying towards the retention of phenolic, flavonoid and antioxidant properties of small cardamom (Elettaria cardamomum): Performance comparison with convection, solar and fluidized bed dryer, Ind. Crops Prod., 2023, vol. 200, p. 116839. https://doi.org/10.1016/j.indcrop.2023.116839

    Article  Google Scholar 

  67. Baddadi, S., Skouri, S., Ayed, R., Jathar, L., and Bouadila, S., Performance investigation of an innovative solar heating unit for a powered self-sustained solar dryer, Appl. Therm. Eng., 2023, vol. 233, p. 121173. https://doi.org/10.1016/j.applthermaleng.2023.121173

    Article  Google Scholar 

  68. Jyoti, Y.K., et al., Enhancement of thermal and techno-economic performance and prediction of drying kinetics of paddy dried in solar bubble dryer, Energy Nexus, 2023, vol. 11, p. 100224. https://doi.org/10.1016/j.nexus.2023.100224

    Article  Google Scholar 

  69. Fang, X.-M., et al., Performance assessment of an evacuated tube solar-electric hybrid dryer for lotus seeds drying: Moisture removal behavior, GHG emission and thermodynamic analysis, J. Cleaner Prod., 2023, vol. 406, p. 136972. https://doi.org/10.1016/j.jclepro.2023.136972

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our sincere thanks to Renewable and Sustainable Energy Lab, Mechanical Department, Sardar Vallabhbhai National Institute of Technology, Surat, India, for providing research facilities.

Funding

Authors gratefully acknowledge the Gujarat Council on Science and Technology (GUJCOST), Department of Science and Technology, Government of Gujarat for funding through the Science Technology and Innovation (STI) Policy of Gujarat for this study under the sanction order number GUJCOST/STI/2023-24/376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pringal M. Patel.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P.M., Rathod, V.P. Evolution of Solar Drying Technology—A Mini-Review. Appl. Sol. Energy 59, 919–942 (2023). https://doi.org/10.3103/S0003701X23600583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X23600583

Keywords:

Navigation