Skip to main content

Thermal Sensibility Analysis of Photoelectric Dark Current

Abstract

The present study evaluates the sensibility of photovoltaics cells relative to changes in temperature. To determine the total energy loss of the photovoltaic cells, the experimental aspect uses the single exponential model. The series resistance and dark saturation current are determined with the current–voltage curves in a dark forward bias condition using a dark static method. The shunt resistance is evaluated directly by measuring the current in a dark reverse biased condition. In this way the reverse saturation current is measured which is the primary cause of photoelectric conversion efficiency reduction. Despite that the saturation current phenomenon has been investigated under standard test conditions and that multiple theoretical models have been developed, there lacks experimental results elucidating the full nature of the relationship between saturation current and temperature. The present research provides a complete description of how photovoltaic cells are affected by temperature.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Sze, S.M. and Ng, K.K., Physics of Semiconductor Devices, John Wiley and Sons, 2006.

    Book  Google Scholar 

  2. Dhass, A., Natarajan, E., and Ponnusamy, L., Influence of shunt resistance on the performance of solar photovoltaic cell, in Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), 2012 International Conference, 2012.

  3. Singh, P. and Ravindra, N.M., Temperature dependence of solar cell performance—an analysis, Solar Energy Mater. Sol. Cells, 2012, vol. 101, pp. 36–45.

    Article  Google Scholar 

  4. Dupré, O., Vaillon, R., and Green, M., Physics of the temperature coefficients of solar cells. Solar Energy Mater. Sol. Cells, 2015, vol. 140, pp. 92–100.

    Article  Google Scholar 

  5. Fan, S., Wang, Y., Cao, S., Zhao, B., Sun, T., and Liu, P., A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels, Energy, 2022, vol. 239, p. 122302.

    Article  Google Scholar 

  6. Chegaar, M., Nehaoua, N., and Bouhemadou, A., Organic and inorganic solar cells parameters evaluation from single I–V plot, Energy Convers. Manage., 2008, vol. 49, no. 6, pp. 1376–1379.

    Article  Google Scholar 

  7. Asanov, M. and Bekirov, E., Experimental study of photovoltaic cell parameters temperature dependence including when applying reverse voltage to its output, Appl. Sol. Energy, 2021, vol. 57, no. 1, pp. 1–7.

    Article  Google Scholar 

  8. Green, M.A., Solar cell fill factors: General graph and empirical expressions, Solid-State Electron., 1981, vol. 24, no. 8, pp. 788–789.

    Article  Google Scholar 

  9. Singh, P., et al., Temperature dependence of I–V characteristics and performance parameters of silicon solar cell, Solar Energy Mater. Sol. Cells, 2008, vol. 92, no. 12, pp. 1611–1616.

    Article  Google Scholar 

  10. Zhou, Z. and Zhao, K., Pre-estimation and evaluation of parameters from J–V curve of CI (G) S devices, Energy Conversion Manage., 2011, vol. 52, no. 5, pp. 2153–2156.

    Article  Google Scholar 

  11. Čabo, F.G., Marinić-Kragić, I., Garma, T., and Nižetić, S., Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation, Energy, 2021, vol. 230, p. 120785.

    Article  Google Scholar 

  12. Dallan, B.S., Schumann, J., and Lesage, F.J., Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system, Sol. Energy, 2015, vol. 118, pp. 276–285.

    Article  Google Scholar 

  13. Ataboev, O.K., Kabulov, R.R., Matchanov, N.A., and Egamov, S.R., Influence of temperature on the output parameters of a photovoltaic module based on amorphous hydrogenated silicon, Appl. Sol. Energy, 2019, vol. 55, no. 3, pp. 159–167.

    Article  Google Scholar 

  14. Peng, D., Fang, Z., Yu, X., and Huang, Q., Characteristic analysis of patterned photovoltaic modules for building integration, Energy Convers. Manage., 2023, vol. 276, p. 116524.

    Article  Google Scholar 

  15. Trupke, T., Green, M., and Würfel, P., Improving solar cell efficiencies by down-conversion of high-energy photons, J. Appl. Phys., 2002, vol. 92, no. 3, pp. 1668–1674.

    Article  Google Scholar 

  16. Razykov, T.M., Ferekides, C.S., Morel, D., Stefanakos, E., Ullal, H.S., and Upadhyaya, H.M., Solar photovoltaic electricity: Current status and future prospects, Sol. Energy, 2011, vol. 85, no. 8, pp. 1580–1608.

    Article  Google Scholar 

  17. Liu, Z., Jin, Z., Li, G., Zhao, X., and Badiei, A., Study on the performance of a novel photovoltaic/thermal system combining photocatalytic and organic photovoltaic cells, Energy Convers. Manage., 2022, vol. 251, p. 114967.

    Article  Google Scholar 

  18. Laudani, A., Fulginei, F.R., and Salvini, A., Identification of the one-diode model for photovoltaic modules from datasheet values, Sol. Energy, 2014, vol. 108, pp. 432–446.

    Article  Google Scholar 

  19. Bouzidi, K., Chegaar, M., and Bouhemadou, A., Solar cells parameters evaluation considering the series and shunt resistance, Sol. Energy Mater. Sol. Cells, 2007, vol. 91, no. 18, pp. 1647–1651.

    Article  Google Scholar 

  20. Nishioka, K., et al., Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration, Sol. Energy Mater. Sol. Cells, 2005, vol. 85, no. 3, pp. 429–436.

    Article  Google Scholar 

  21. Skoplaki, E. and Palyvos, J.A., On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations, Sol. Energy, 2009, vol. 83, no. 5, pp. 614–624.

    Article  Google Scholar 

  22. Yadir, S., Bendaoud, R., El-Abidi, A., Amiry, H., Benhmida, M., Bounouar, S., and Elhassnaoui, A., Evolution of the physical parameters of photovoltaic generators as a function of temperature and irradiance: New method of prediction based on the manufacturer’s datasheet, Energy Convers. Manage., 2020, vol. 203, p. 112141.

    Article  Google Scholar 

  23. Kabulov, R.R., Makhmudov, M.A., Ataboev, O.K., and Khazhiev, M.U., The study of factors that influence on the effectiveness of the photoconversion of n-CdS/p-CdTe heterostructures, Appl. Sol. Energy, 2016, vol. 52, no. 1, pp. 61–67.

    Article  Google Scholar 

  24. Lappalainen, K. and Valkealahti, S., Effects of PV array layout, electrical configuration and geographic orientation on mismatch losses caused by moving clouds, Sol. Energy, 2017, vol. 144, pp. 548–555.

    Article  Google Scholar 

  25. Sedra, A.S. and Smith, K.C., Microelectronic Circuits, New York: Oxford University Press, 1998, vol. 1.

    Google Scholar 

  26. Yıldıran, N. and Tacer, E., Identification of photovoltaic cell single diode discrete model parameters based on datasheet values, Sol. Energy, 2016, vol. 127, pp. 175–183.

    Article  Google Scholar 

  27. Priyanka, Lal, M., and Singh, S.N., A new method of determination of series and shunt resistances of silicon solar cells, Sol. Energy Mater. Sol. Cells, 2007, vol. 91, no. 2, pp. 137–142.

    Article  Google Scholar 

  28. Lal, M. and S. Singh, A new method of determination of series and shunt resistances of silicon solar cells, Sol. Energy Mater. Sol. Cells, 2007, vol. 91, no. 2, pp. 137–142.

    Article  Google Scholar 

  29. Macabebe, E.Q. and Van Dyk, E.E., Parameter extraction from dark current–voltage characteristics of solar cells, S. Afr. J. Sci., 2008, vol. 104, nos. 9–10, pp. 401–404.

    Google Scholar 

  30. Sempels, É.V., Kempers, R., and Lesage, F.J., Load-bearing figure-of-merit characterization of a thermoelectric module, IEEE Trans. Components, Packag. Manuf. Technol., 2016, vol. 6, no. 1, pp. 50–57.

    Article  Google Scholar 

  31. Kaminski, A., Marchand, J., and Laugier, A., Non ideal dark I–V curves behavior of silicon solar cells, Sol. Energy Mater. Sol. Cells, 1998, vol. 51, no. 3, pp. 221–231.

    Article  Google Scholar 

  32. Radziemska, E., Dark I–U–T measurements of single crystalline silicon solar cells, Energy Convers. Manage., 2005, vol. 46, no. 9, pp. 1485–1494.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2015-05242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric J. Lesage.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesage, F.J., Eugenie, R. Thermal Sensibility Analysis of Photoelectric Dark Current. Appl. Sol. Energy 59, 102–110 (2023). https://doi.org/10.3103/S0003701X2360011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X2360011X

Keywords: