Skip to main content

Creation of Low-Ohmic Copper Contacts on the Surface of Silicon Crystals for Application in Photocells

Abstract

In this work, we study the phase composition, structure, and surface relief (roughness) of the sample obtained by depositing a thin copper layer on the surface of a silicon polycrystal by using the magnetron ion sputtering source operating on direct current. The study of the applied copper layer was carried out by the methods of X-ray phase analysis, scanning electron, and atomic force microscopy. It was shown that the creation of an ohmic contact on the silicon surface with a copper thin layer due to the high conductivity of copper and with a thickness of more than 3.0–3.5 microns, reduces the electrical resistance of the Cu–Si contact. In this case, the structure and morphology of the silicon surface do not change, and the deposited copper layer is thin and less rough, which will make it possible to obtain thin low-resistance copper contact layers also on the surface of silicon photocells in order to reduce current losses and, accordingly, increase their efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Demidov, A.A. and Rybalka, S.B. Modern and promising semiconductor materials for microelectronics of the next decade (2020–2030), Prikl. Matem. Fiz., 2021, vol. 53, no. 1, pp. 53–72. https://doi.org/10.52575/2687-0959-2021-53-1-53-72

    Article  Google Scholar 

  2. Kritskaya, T.V. and Bytkin, S.V., Promising semiconductor materials for use in power electronics, Visn. Kharkiv. Politekh. Univ., 2018, no. 26 (1302), pp. 148–161. https://doi.org/10.20998/2413-4295.2018.26.21

  3. Kurbanov, M.S., Ashurov, K.B., and Abdurakhmanov, B.M. Prospects for the production of silicon and solar energy products in the Republic of Uzbekistan, Appl. Sol. Energy, 2018, vol. 54, pp. 85–90.

    Article  Google Scholar 

  4. Daus, Y.V., Yudaev, I.V., and Stepanchuk, G.V., Reducing the costs of paying for consumed electric energy by utilizing solar energy, Appl. Sol. Energy, 2018, vol. 54. pp. 139–143. https://doi.org/10.3103/S0003701X18020056

    Article  Google Scholar 

  5. Lavrukhin, D.V., Yachmenev, A.E., Bugaev, A.S., et al., Investigation of the optical properties of GaAs with δ-Si doping grown by molecular-beam epitaxy at low temperatures, Semiconductors, 2015, vol. 49, no. 7, pp. 911–914.

    Article  Google Scholar 

  6. Vashchenko, A.V., Application of the method of molecular beam epitaxy to obtain thin films and multilayer structures in outer space, Tr. Mosk. Aviats. Inst., 2007, no. 27, p. 7.

  7. Balashev, V.V., Korobtsov, V., Pisarenko, T., Chusovitin, E., and Galkin, K., Study of ultrathin iron silicide films grown by solid phase epitaxy on the Si(001) surface, Phys. Solid. State, 2010, vol. 52, no. 2, pp. 397–403.

    Article  Google Scholar 

  8. Zotov, A.V., Korobtsov, V.V., and Lifshits, V.G., Formation of microstructures with “buried” surface phases on silicon, Mikrosist. Tekh., 2000, no. 3, pp. 3–5.

  9. Bessolov, V.N., Kompan, M.E., Konenkova, E.V., and Panteleev, V.N., Hydride vapor-phase epitaxy of a semipolar AlN(101¯2) layer on a nanostructured Si(100) substrate, Tech. Phys. Lett., 2020, vol. 46, no. 2, pp. 59–61.

    Article  Google Scholar 

  10. Kuchkanov, S.K., et al., Thermalvoltaic effect in Si-Ge/Si and Si-Ge/Si film structures subjected to ion treatment, Appl. Sol. Energy, 2022, vol. 58, no. 3, pp. 355–359. https://doi.org/10.3103/S0003701X22030100

    Article  Google Scholar 

  11. Korobko, A.O., Solov’ev, Ya.A., Kaidov, O.L., Glukhmanchuk, V.V., and Dostanko, A.P., Development of technological processes for creating solar cells with contacts based on nickel silicide, Dokl. Belorus. Univ. Inf. Radioelektron., 2009, no. 4 (42), pp. 61–64.

  12. Bakhadyrkhanov, M.K. and Kenzhaev, E.T., Optimal conditions for nickel doping to improve the efficiency of silicon photoelectric cells, Tech. Phys., 2021, vol. 66, pp. 851–856.

    Article  Google Scholar 

  13. Kudinov, V.V. and Ivanov, V.M., Nanesenie plazmoi tugoplavkikh pokrytii (Plasma Deposition of Refractory Coatings), Moscow: Mashinostroenie 1981.

  14. Rykalin, N.N., Shorshorov, M.Kh., and Krasulin, Yu.L., Physical and chemical problems of joining dissimilar materials, Neorg. Mater., 1965, vol. 1, pp. 29–36.

    Google Scholar 

  15. Terekhov, D.Yu. and Solov’ev, B.M., USSR Inventor’s Certificate no. 1638198, Byull. Izobret., 1991, no. 32.

  16. Nadol’skii, V.O. and Navoznov, A.N., USSR Inventor’s Certificate no. 1758082, Byull. Izobret., 1992, no. 32.

  17. Il’yushchenko, A.F., Kundas, S.P., Dostanko, A.P., et al., Protsessy plazmennogo naneseniya pokrytii: teoriya i praktika (Plasma Coating Processes: Theory and Practice), Dostanko, A.P. and Vityaz’, P.A., Eds., Minsk: Artemida Marketing, 1999.

  18. Akhralovich, E.S., Belaya, M.A., Shemenkov, V.M., and Korotkevich, A.F., Progressive electrophysical methods for modifying tool hard alloys, Stud. Vestn. Elektron. Nauchno-Tekh. Zh., 2008. http://www.bru.mogilev.by.

  19. Luzan, C.A., Gorbachevskaya, O.M., and Bisha, V.M., Analysis of methods for preparing surfaces of parts for spraying thermal spray coatings, Sb. Nauchn. Rab. Kharkov. Politekh. Univ., Mekh. Mashinostr., 2012, no. 1, pp. 124–128.

  20. Sakharov, Yu.V. and Troyan, P.E., Investigation of porous films of silicon dioxide, Elektron., Izmerit. Tekh., Radiotekh. Svyaz’, 2010, no. 1 (21), pp. 118–122.

  21. Kim, J.H. and Chung, K.W., Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering, J. Appl. Phys., 1998, vol. 83, no. 11, pp. 137–140.

    Article  Google Scholar 

  22. Arustamov, V.N., Ashurov, R.K., Rotchtein, V.M., Ashurov, K.B., and Khudaykulov, I.K., Cleaning the surface of products with glow discharge plasma, J. Phys.: Conf. Ser., 2020, vol. 1686, no. 1, p. 012013.

    Google Scholar 

  23. Protsessy v mikro- i nanotekhnologii (Processes in Micro- and Nanotechnology), Moscow: Mosk. Inst. Elektron. Tekh., 2013, ch. 5.

  24. Basanets, V.V., Slepokurov, V.S., Shinkarenko, V.V., Kudrik, R.Ya., and Kudrik, Ya.Ya., Investigation of the resistivity of ohmic Au–Ti–Pd–n-Si contacts for avalanche transit diodes, Tekhnol. Konstr. Elektron. App., 2015, no. 1, pp. 33–37. https://doi.org/10.15222/TKEA2015.1.33

  25. Kremkov, M.V. and Voronov, M.V., Method of the technology’s synthesis for the presentation of the solar energy cells production entity description, Appl. Sol. Energy, 2022, vol. 58, no. 3, pp. 458–460. https://doi.org/10.3103/S0003701X22030094

    Article  Google Scholar 

Download references

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kremkov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arustamov, V.N., Khudaykulov, I.K., Kremkov, M.V. et al. Creation of Low-Ohmic Copper Contacts on the Surface of Silicon Crystals for Application in Photocells. Appl. Sol. Energy 59, 95–101 (2023). https://doi.org/10.3103/S0003701X22601612

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X22601612

Keywords.