Skip to main content
Log in

Investigation of Fibrous Heat-Shielding Ceramic Composite Materials on a Solar Furnace

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The article considers the influence of a concentrated solar radiation flux at the focus of a Big Solar Furnace (BSF) on the formation of hierarchical structures of heat-shielding ceramic composite materials based on refractory oxide fibers. A flat front of irradiation with a concentrated solar flux in the focal spot of the BSF creates a uniform thermal field over the surface, which has a sharp temperature gradient deep into the sample along the z-axis, forming isothermal planes with a uniform temperature. It means that in these planes a certain hierarchical self-organization of a structure with a certain crystal structure takes place. At such concentrated solar irradiation, a high-density flux falls on the sample surface, a nonlinear, non-equilibrium temperature field arises, which shows that the processes in the solar furnace belong to the category of “Complexity” processes. Samples of heat-shielding materials were irradiated on the BSF at a concentrated solar radiation flux density of 380 and 460 W/cm2 until partial destruction in order to obtain a sintering and reflow zones on the samples to determine phase and structural changes in the samples. Investigations of microstructure of fused samples of VMK-5 and VMK-6 ceramic composite materials, heat-treated with a solar energy concentrated flow at T = 1800–1900°С, showed that a hierarchically self-organized structure with cubic and acicular crystals is formed in the samples. Studies of the microstructure of the fused VTI-17 samples showed that the structure of the samples passed to a new hierarchical level, from a chaotic distribution of fibers with non-fibrous inclusions in the initial samples to a hierarchically self-organized microstructure in the form of large grains. A further increase in temperature transfers the system to a new hierarchical level, crystals of cubic and lamellar shape grow from the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Gromov, V.T., Vvedenie v radiatsionnuyu fiziku tverdogo tela (Introduction to Radiation Physics of Solids), Snezhinsk: Ross. Fed. Yader. Tsentr Vseross. Nauchno-Issled. Inst. Tekh. Fiz., 2007.

  2. Barsukov, O.A. and El’yashevich, M.A., Osnovy atomnoi fiziki (Fundamentals of Atomic Physics), Moscow: Nauchnyi mir, 2006.

  3. Oksengendler, B.L., Turaeva, N., Maksimov, S., Ashurov, Kh., et al., Nanofractals, their properties and applications, Horizons in World Physics, New York: Nova Science, 2019, vol. 298, ch. 1, pp. 1–36. https://novapublishers.com/shop/horizons-in-world-physics-volume-298/

    Google Scholar 

  4. Alyakrinsky, O., Avilov, M., Bolkhovityanov, D., Esposito, J., Fadev, S., et al., High power neutron converter for low energy proton/deutronbeams, Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 557, pp. 403–413. https://doi.org/10.1016/j.nima.2005.10.127

    Article  Google Scholar 

  5. Hemply, R.J., Crabtree, G.W., and Buchanan, M.V., Materials in extreme environments, Phys. Today, 2009, vol. 62, no. 11, pp. 32–37. https://doi.org/10.1063/1.3265234

    Article  Google Scholar 

  6. Moshnikov, V.A., Gracheva, I.E., and Pronin, I.A., Investigation of materials based on silicon dioxide under the conditions of the kinetics of self-assembly and spinodal decomposition of two types, Nanotekhnika, 2011, no. 2, pp. 46–54.

  7. Kirillova, S.A., Al’myashev, V.I., and Gusarov, V.V., Spinodal decomposition in the SiO2–TiO2 system and hierarchically organized nanostructures formation, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 2, pp. 100–115. http://www.mathnet.ru/links/17b543adfeac82441c3cfab-485aedc77/nano678.pdf.

    Google Scholar 

  8. Gracheva, I.E. and Moshnikov, V.A., Nanomaterialy s ierarkhicheskoi strukturoi por: ucheb. posobie (Nanomaterials with Hierarchical Pore Structure: Handbook), St. Petersburg: S.-Petersb. Gos. Eletrotekh. Univ., 2011. https://www.researchgate.net/publication/316658224_ Graceva_I_E_Mosnikov_V_A_Nanomaterialy_s_ierarhiceskoj_strukturoj_por_Uceb_posobie_SPb_Izd- vo_SPbGETU_LETI_2011_107_s.

  9. Andrievskii, R.A., Can consolidated nanomaterials be used in extreme conditions?, Kompoz. Nanostrukt., 2009, no. 4, pp. 35–41. http://www.issp.ac.ru/journal/composites/2009/2009_4/andrievskii.pdf.

  10. Lee, S.-H., Thermal stability and mechanical properties of SiC particulatere in forced Si-C-N composites after heating at 2000°C, J. Eur. Ceram. Soc., 2009, vol. 29, no. 16, pp. 3387–3393. https://doi.org/10.1016/j.jeurceramsoc.2009.07.001

    Article  Google Scholar 

  11. Zhmurikov, E.I., Bubnenkov, I.A., Dremov, V.V., Samarin, S.I., Pokrovskii, A.S., and Khar’kov, D.V., Grafit v nauke i yadernoi tekhnike (Graphite in Science and Nuclear Engineering), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2013.

  12. Tsybulya, S.V. and Cherepanova, S.V., Vvedenie v strukturnyi analiz nanokristallov. Uchebnoe posobie (Introduction to Structural Analysis of Nanocrystals. Handbook), Novosibirsk: Novosib. Gos. Univ., 2009.

  13. Zhmurikov, E.I., Romanenko, A.I., Anikeeva, O.B., et al., Effect of high temperatures on the electrical properties and macrostructure of carbon composites, Neorg. Mater., 2006, vol. 41, no. 6, pp. 1–8.

    Google Scholar 

  14. Li, D., Nielsen, M.H., Lee., J.R.I., Frandsen, C., Banfield, J.F., and De Yoreo, J.J., Direction-specific interactions control crystal growth by oriented attachment, Science, 2012, vol. 336, no. 6084, pp. 1014–1018. https://doi.org/10.1126/science.1219643

    Article  Google Scholar 

  15. Riskiev, T.T. and Suleimanov, S.Kh., Double mirror polyheliostat solar furnace of 1000 kW thermal power, Sol. Energy Mater., 1991, vol. 24, nos. 1–4, pp. 625–632. https://doi.org/10.1016/0165-1633(91)90096-4

    Article  Google Scholar 

  16. Azimov, S.A., Mallaeva, Kh.M., Pirmatov, I.I., Riskiev, T.T., and Suleimanov, S.Kh., Calculation of the optical characteristics of two-mirror high-power solar furnaces, Geliotekhnika, 1979, no. 2, pp. 23–28.

  17. Lukashin, A.V., Creation of functional nanocomposites based on oxide matrices with an ordered porous structure, Doctoral (Chem.) Dissertation, Moscow: Moscow State Univ., 2009. www.dissercat.com/content/sozdanie-funktsionalnykh-nanokompozitov-na-osnove-oksidnykh-matrits-s-uporyadochennoi-porist/read

  18. Bobkov, A.A., Kononova, I.E., and Moshnikov, V.A., Materialovedenie mikro- i nanosistem. Ierarkhicheskie struktury (Material Science of Micro- and Nanosystems. Hierarchical Structures), St. Petersburg: Izd. S.-Petersb. Gos. Eletrotekh. Univ. LETI, 2017.

  19. Pozdnyakov, V.A., Fizicheskoe materialovedenie nanostrukturnykh materialov: ucheb. posobie (Physical Materials Science of Nanostructured Materials: Handbook), Moscow: Mosk. Gos. Ind. Univ., 2007.

  20. Molchanov, S.P., Lebedev-Stepanov, P.V., Klimonskii, S.O., et al., Self-assembly of ordered layers of silica microspheres on a vertical plate, Ross. Nanotekhnol., 2010, nos. 5–6, pp. 54–58.

  21. Grzelczak, M., Vermant, J., Furst, E.M., and Liz-Marzán, L.M., Directed self-assembly of nanoparticles, ACS Nano, 2010, vol. 4, no. 7, pp. 3591–3605.

    Article  Google Scholar 

  22. Rudenko, O.V., Korobov, A.I., Korshak, B.A., et al., Self-assembly of ensembles of colloidal particles in an acoustic field, Ross. Nanotekhnol., 2010, nos. 7–8, pp. 63–65.

  23. Shubert, U., Gao, Y., and Kogler, F.R., Tuning the properties of nanostructured inorganic-organic hybrid polymers obtained from metal oxide clusters as building blocks, Prog. Solid State Chem., 2007, vol. 35, no. 1, pp. 161–170.

    Article  Google Scholar 

  24. Ozin, G.A., Hou, K., Lotsch, B.V., et al., Nanofabrication by self-assembly, Mater. Today, 2009, vol. 12, no. 5, pp. 12–23. https://doi.org/10.1016/S1369-7021(09)70156-7

    Article  Google Scholar 

  25. Moshnikov, V.A., Gracheva, I.E., and An’chkov, M.G., Investigation of sol-gel derived nanomaterials with a hierarchical structure, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 485–495. https://doi.org/10.1134/S1087659611050063

    Article  Google Scholar 

  26. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., Diagrammy sostoyaniya silikatnykh sistem. Dvoinye sistemy (State Diagrams of Silicate Systems. Double Systems), Leningrad: Nauka, Leningr. otd., 1969.

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Ministry of Education and Science of the Russian Federation (agreement no. 075-11-2021-077) and the Ministry of Innovative Development of the Republic of Uzbekistan for financial support of research carried out as part of joint Russian–Uzbek research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kh. Suleymanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Domoroshchina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleymanov, S.K., Babashov, V.G., Oksengendler, B.L. et al. Investigation of Fibrous Heat-Shielding Ceramic Composite Materials on a Solar Furnace. Appl. Sol. Energy 57, 486–498 (2021). https://doi.org/10.3103/S0003701X21060165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X21060165

Keywords:

Navigation