Skip to main content
Log in

Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

In this study the results of the analysis of the dependence of the temperature of solar cells (SCs) and thermoelectric generators (TEGs) and the overall electrical and thermal efficiency of the PVT–TEG combined system on thermal characteristics and environment are presented. The hot side of a TEG module is attached to the back side of the photovoltaic module (PVM). The heat carrier circulating through the absorber cools down the cold side of the TEG module, where the temperature gradient is converted into additional electrical energy. The mathematical model for a PVT–TEG combined setup was realized in the MathCAD program. The agreement between numerical calculations and experimental data was analyzed using the “goodness of fit.” Experimental measurements were carried out at the Heliopolygon at Tashkent State Technical University. The solar radiation flux density, ambient temperature, wind speed, open circuit voltage, short-circuit current, temperatures of the PVM, the thermo-electromotive force, and the current of TEG were measured without and with reflectors oriented to the south at a horizontal angle of 25°. However, in order to verify the model, the calculated and experimental data of the output power of the combined PVT–TEG setup were compared. It was revealed that the root-mean-square deviation (RMSD) of the peak power of the experimental and calculated data was 1.74 W, or 4.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.

Similar content being viewed by others

REFERENCES

  1. Ravita Lamba and Kaushik, S.C., Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system, Energy Convers. Manage., 2016, vol. 115, pp. 288–298, https://doi.org/10.1016/j.enconman.2016.02.061

    Article  Google Scholar 

  2. Royne, A., Dey, C.J., and Mills, D.R., Cooling of photovoltaic cells under concentrated illumination: a critical review, Sol. Energy Mater. Sol. Cells, 2005, vol. 86, pp. 451–83.

    Article  Google Scholar 

  3. Fudholi, A., Sopian K., Yazdi, M.H., Ruslan, M.H., Ibrahim, A., and Kazem, H.A., Performance analysis of photovoltaic thermal (PVT) water collectors, Energy Convers. Manage., 2014, vol. 78, pp. 641–651. https://doi.org/10.1016/j.enconman.2013.11.017

    Article  Google Scholar 

  4. Ibrahim, A., Fudholi, A., Sopian, K., Othman, M.Y., and Ruslan, M.H., Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system, Energy Convers. Manage., 2014, vol. 77, pp. 527–534. https://doi.org/10.1016/j.enconman.2013.10.033

    Article  Google Scholar 

  5. Ibrahim, A., Othman, M.Y., Ruslan, M.H., Mat, S., and Sopian, K., Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors, Renewable Sustainable Energy Rev., 2011, vol. 15, no. 1, pp. 352–365. https://doi.org/10.1016/j.rser.2010.09.024

    Article  Google Scholar 

  6. Hamid, S.A., Othman, M.Y., Sopian, K., and Zaidi, S.H., An overview of photovoltaic thermal combination (PV/T combi) technology, Renewable Sustainable Energy Rev., 2014, vol. 38, pp. 212–222. https://doi.org/10.1016/j.rser.2014.05.083

    Article  Google Scholar 

  7. Kumar, R. and Rosen, M.A., A critical review of photovoltaic-thermal solar collectors for air heating, Appl. Energy, 2011, vol. 88, no. 11, pp. 3603–3614. https://doi.org/10.1016/j.apenergy.2011.04.044

    Article  Google Scholar 

  8. Chow, T.T., He, W., Chan, A.L.S., Fong, K.F., Lin, Z., and Ji, J., Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system, Appl. Therm. Eng., 2008, vol. 28, nos. 11–12, pp. 1356–1364. https://doi.org/10.1016/j.applthermaleng.2007.10.007

    Article  Google Scholar 

  9. Hazi, A., Hazi, G., Grigore, R., and Vernica, S., Opportunity to use PVT systems for water heating in industry, Appl. Therm. Eng., 2014, vol. 63, no. 1, pp. 151–157. https://doi.org/10.1016/j.applthermaleng.2013.11.010

    Article  Google Scholar 

  10. Chow, T.T., A review on photovoltaic/thermal hybrid solar technology, Appl. Energy, 2009, vol. 87, pp. 365–379. https://doi.org/10.1016/j.apenergy.2009.06.037

    Article  Google Scholar 

  11. Hasan, M.A. and Sumathy, K., Photovoltaic thermal module concepts and their performance analysis: a review, Renewable Sustainable Energy Rev., 2010, vol. 14, pp. 1845–1859. https://doi.org/10.1016/j.rser.2010.03.011

    Article  Google Scholar 

  12. Zhang, X., Zhao, X., Smith, S., Xu, J., and Yu, X., Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renewable Sustainable Energy Rev., 2012, vol. 16, pp. 599–617. https://doi.org/10.1016/j.rser.2011.08.026

    Article  Google Scholar 

  13. Othman, M.Y., Ibrahim, A., Jin, G.L., Ruslan, M.H., and Sopian, K., Photovoltaic–thermal (PV/T) technology—the future energy technology, Renewable Energy, 2013, vol. 49, pp. 171–174. https://doi.org/10.1016/j.renene.2012.01.038

    Article  Google Scholar 

  14. Fudholi, A., Zohri, M., Jin, G.L., Ibrahim, A., Yen, C.H., Othman, M.Y., et al. Energy and exergy analyses of photovoltaic thermal collector with ∇-groove, Sol. Energy, 2018, vol. 159, pp. 742–750. https://doi.org/10.1016/j.solener.2017.11.056

    Article  Google Scholar 

  15. Bulusu, A. and Walker, D.G., Review of electronic transport models for thermoelectric materials, Superlattices Microstruct., 2008, vol. 44, pp. 1–36.

    Article  Google Scholar 

  16. Van Sark, W.G.J.H.M., Feasibility of photovoltaic–thermoelectric hybrid modules, Appl. Energy, 2011, vol. 88, pp. 2785–2790.

    Article  Google Scholar 

  17. Vorobiev, Y., González-Hernández, J., Vorobiev, P., and Bulat, L., Thermal–photovoltaic solar hybrid system for efficient solar energy conversion, Sol. Energy, 2006, vol. 80, pp. 170–176.

    Article  Google Scholar 

  18. Zhang, X. and Chau, K.T., An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking, Energy Convers. Manage., 2011, vol. 52, no. 1, pp. 641–647.

    Article  Google Scholar 

  19. Zhang, X. and Chau, K.T., Design and implementation of a new thermoelectric–photovoltaic hybrid energy system for hybrid electric vehicles, Electr. Power Comp. Syst., 2011, vol. 39, no. 6, pp. 511–525.

    Article  Google Scholar 

  20. Kraemer, D., Hu, L., Muto, A., Chen, X., Chen, G., and Chiesa, M., Photovoltaic–thermoelectric hybrid systems: a general optimization methodology, Appl. Phys. Lett., 2008, vol. 92, no. 24, id. 243503.

  21. Ju, X., Wang, Z., Flamant, G., et al., Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system, Sol. Energy, 2012 vol. 86, no. 6, pp. 1941–1954.

    Article  Google Scholar 

  22. Tritt, T.M., Bottner, H., and Chen, L., Thermoelectrics: direct solar thermal energy conversion, MRS Bull., 2008, vol. 33, pp. 366–368.

    Article  Google Scholar 

  23. Yang, D.J. and Yin, H.M., Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization, IEEE Trans. Energy Convers., 2011, vol. 26, no. 2, pp. 662–670.

    Article  Google Scholar 

  24. Yuldoshev, I.A., Combined power plants based on photovoltaic batteries made of crystalline silicon, Doctoral (Tech. Sci.) Dissertation, Tashkent, 2016.

  25. Tursunov, M.N., Muminov., R.A., Yuldashev, I.A., Tukfatullin, O.F., and Abdullaev, E.T., Photothermal electric battery based on silicon solar cells, Appl. Sol. Energy, 2011, vol. 47, no. 1, pp. 63–65.

    Article  Google Scholar 

  26. Lutullaev, S.L., Tursunov, M.N., Dadamuhamedov, S., and Yuldoshev, I.A., Utility Model Patent no. FAP 00793 of July 18, 2011. Photothermal Converter, Official Gazette, 2013, no. 2.

  27. Tursunov, M.N., Dyskin, V.G., Dadamuhamedov, S., Yuldoshev, I.A., and Turdiev, B.M., Determination of the parameters of the combined system of the photoconverter–thermoelectric converter, Geliotekhnika, 2012, no. 3, pp. 24–27.

  28. Tursunov, M.N., Dyskin, V.G., and Yuldoshev, I.A., Investigation of the parameters of a combined installation based on “photo-thermal batteries” with concentrators, Materials of the III International Conference on Optical and Photoelectric Phenomena in Semiconductor Micro and Nanostructures, Fergana, November 14–15, 2012, pp. 108–110.

  29. Yuldoshev, I.A. and Saymbetov, A.K., Combined photo thermo converters solar energy with reflecting concentrators, Proceedings of XII International Scientific Conference “Solid State Physics,” Astana, June 25–27, 2014, pp. 217–219.

  30. Santbergen, R., Rindt, C.M., Zondag, H.A., and van Zolingen, R.Ch., Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors, Sol. Energy, 2010, vol. 84, pp. 867–878.

    Article  Google Scholar 

  31. Yuldoshev, I.A., Shoguchkarov, S.K., Kudratov, A.R., and Jamolov, T.R., A study of the parameters of a combined photo-thermoelectric installation under field conditions, Appl. Sol. Energy, 2020, vol. 56, no. 2, pp. 125–130.

    Article  Google Scholar 

  32. Yuldoshev, I.A., Shoguchkarov, S.K., Makhmudov, S.Sh., Botirov, B.M., and Khairullaev, Kh.K., Investigation of the parameters of the combined “Photo-thermovoltaic” installation in natural conditions, Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Solnechnaya energetika” (International Scientific and Practical Conference “Solar Energy”), December 20–21, 2020, p. 37.

  33. Avezov, R.R., Akhatov, J.S., and Avezova, N.R., A review on photovoltaic–thermal (PV–T) air and water collectors, Appl. Sol. Energy, 2011, vol. 47, pp. 169–183. https://doi.org/10.3103/S0003701X11030042

    Article  Google Scholar 

  34. Yuldoshev, I.A., Tursunov, M.N., Shoguchkarov, S.K., and Abdufattoeva E.M., Combined power plant based on high efficiency photo thermovoltaic battery, Probl. Energo-Resursosberezh., 2018, nos. 3–4, pp. 356–361.

  35. Nurul Syakirah Nazri, Ahmad Fudholi, Bardia Bakhtyar, Chan Hoy Yen, Adnan Ibrahim, Mohd-Hafidz Ruslan, Sohif Mat, and Kamaruzzaman Sopian, Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT–TE) air collectors, Renewable Sustainable Energy Rev., 2018, vol. 92, pp. 187–197.

    Article  Google Scholar 

  36. Shen, L., Xiao, F., Chen, H., and Wang, S., Investigation of a novel thermoelectric radiant air-conditioning system, Energy Build., 2013, vol. 59, pp. 123–132.

    Article  Google Scholar 

  37. Evans, D.L., Simplified method for predicting photovoltaic array output, Sol. Energy, 1981, vol. 27, pp. 555–560.

    Article  Google Scholar 

  38. Incropera, F.P. and DeWitt, D., Fundamentals of Heat and Mass Transfer, New York: Wiley, 4th ed.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Academy of Sciences of the Republic of Uzbekistan academician R.A. Muminov, Dr. Sc. M.N. Tursunov, and Dr. V.G. Dyskin for discussion of the results.

Funding

The study was carried out with the financial support of the Ministry of Innovation Development of the Republic of Uzbekistan as part of project F-ОТ-2021-497 Development of Scientific Foundations for the Creation of Solar Cogeneration Plants based on Photovoltaic Thermal Batteries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Yuldoshev.

Ethics declarations

The authors declare that they have do not have a conflict of interest.

Additional information

Translated by A. Muravev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoguchkarov, S.K., Halimov, A.S., Yuldoshev, I.A. et al. Verification of a Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Concentrated Solar Radiation. Appl. Sol. Energy 57, 384–390 (2021). https://doi.org/10.3103/S0003701X21050121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X21050121

Keywords:

Navigation