Skip to main content
Log in

Study of n-SnO2/p-Si Heterostructures Fabricated by Chemical Vapor Deposition Methods

  • SOLAR ENGINEERING MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract—

Technology has been developed for generating a vapor phase in a separate evaporator at a temperature of 80–120°C by dropping a mixture in a quasi-closed reactor with the help of chemical vapor deposition (CVD). Tin oxide (SnO2) layers were grown on the surface of single-crystal p-Si by chemical vaporization epitaxy and formed a microcrystalline structure on the substrate surface at a temperature of 170–500°C. The study of the spectral dependence of the photosensitivity of the n-SnO2/p-Si heterostructure with an aluminum back contact showed that the inversion of photocurrent photosensitivity occurred associated with the formation of an inbuilt electric field that was generated at the boundary of the frontal electric contact between Al and p-Si and counter connected to the main potential barrier of the n-SnO2/p-Si heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chen, X., Liang, J., Zhou, Z., et al., The preparation of SnO2 film by electrodeposition, Mater. Res. Bull., 2010, vol. 45, no. 12, pp. 2006–2011. https://doi.org/10.1016/j.materresbull.2010.07.029

    Article  Google Scholar 

  2. Korotkov, R.Y., Ricou, P., Farran, A.J.E., Preferred orientations in polycrystalline SnO2 films grown by atmospheric pressure chemical vapor deposition, Thin Solid Films, 2006, vol. 502, nos. 1–2, pp. 79–87. https://doi.org/10.1016/j.tsf.2005.07.248

    Article  Google Scholar 

  3. Ruske, M., Bräuer, G., Pistner, J., et al., Properties of SnO2 films prepared by DC and MF reactive sputtering, Thin Solid Films, 1999, vol. 351, nos. 1–2, pp. 146–150. https://doi.org/10.1016/S0040-6090(99)00083-8

    Article  Google Scholar 

  4. Leng, D., Wu, L., Jiang, H., et al., Preparation and properties of SnO2 film deposited by magnetron sputtering, Int. J. Photoenergy, 2012, vol. 2012, art. id. 235971. https://doi.org/10.1155/2012/235971

  5. Hsu, P.C., Hsu, C.J., Chang, C.-H., et al., Sputtering deposition of P-type SnO films with SnO2 target in hydrogen-containing atmosphere, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 16, pp. 13724–13729. https://doi.org/10.1021/am5031787

    Article  Google Scholar 

  6. Lee, S.U., Choi, W.S., and Hong, B., Synthesis and characterization of SnO2: Sb film by dc magnetron sputtering method for applications to transparent electrodes, Physica Scripta, 2007, vol. T129, pp. 312–315. https://doi.org/10.1088/0031-8949/2007/T129/069

    Article  Google Scholar 

  7. Cachet, H., Bruneaux, J., Folcher, G., et al., n‑Si/SnO2 junctions based on macroporous silicon for photoconversion, Sol. Energy Mater. Sol. Cells, 1997, vol. 46, no. 2, pp. 101–114. https://doi.org/10.1016/S0927-0248(96)00095-5

    Article  Google Scholar 

  8. Chen, Z., Lai, J., Shek, C.H., and Chen, H.D., Nucleation and growth of SnO2 nanocrystallites prepared by pulsed laser deposition, Appl. Phys. A, 2005, vol. 81, no. 5, pp. 959–962. https://doi.org/10.1007/s00339-004-3099-7

    Article  Google Scholar 

  9. Chan y Díaz, E., Duarte-Moller, A., Camacho, J.M., and Castro-Rodríguez, R., SnO2 thin films grown by pulsed Nd:YAG laser deposition, Appl. Phys. A, 2012, vol. 106, no. 3, pp. 619–624. https://doi.org/10.1007/s00339-011-6630-7

    Article  Google Scholar 

  10. Songqing, Z., Yueliang, Z., Shufang, W., et al., Effect of ambient oxygen pressure on structural, optical and electrical properties of SnO2 thin films, Rare Met., 2006, vol. 25, no. 6, pp. 693–696. https://doi.org/10.1016/S1001-0521(07)60014-X

    Article  Google Scholar 

  11. Serin, T., Serin, N., Karadeniz, S., et al., Electrical, structural and optical properties of SnO2 thin films prepared by spray pyrolysis, J. Non-cryst. Solids, 2006, vol. 352, no. 3, pp. 209–215. https://doi.org/10.1016/j.jnoncrysol.2005.11.031

    Article  Google Scholar 

  12. Boshta, M., Mahmoud, F.A., and Sayed, M.H., Characterization of sprayed SnO2: Pd thin films for gas sensing applications, J. Ovonic Res., 2010, vol. 6, no. 2, pp. 93–98. http://www.chalcogen.ro/index.php/journals/journal-of-ovonic-research/12-jor/251-volume-6-number-2-march-april-2010

    Google Scholar 

  13. Gu, Z., Liang, P., Liu, X., et al., Characteristics of sol–gel SnO2 films treated by ammonia, J. Sol–Gel Sci. Technol., 2000, vol. 18, no. 2, pp. 159–166. https://doi.org/10.1023/A:1008769020768

    Article  Google Scholar 

  14. Atabaev, I.G., Hajiev, M.U., Pak, V.A., et al., Growth of transparent electrical conducting films of indium and tin oxides by chemical vapor deposition, Appl. Sol. Energy, 2016, vol. 52, no. 2, pp. 103–106. https://doi.org/10.3103/S0003701X16020079

    Article  Google Scholar 

  15. Atabaev, I.G., Khazhiev, M.U., Pak, V.A., and Zakirova, S.B., RUz Patent IAP 05674, 2018.

  16. He, B., Xu, J., Xing, H., et al., Observation of nanospherical n-SnO2/p-Si heterojunction fabricated by ultrasonic spray pyrolysis technique, Surf. Rev. Lett., vol. 20, no. 5, art. id. 1350052. https://doi.org/10.1142/S0218625X13500522

  17. Razykov, T.M., Bosio, A., Ergashev, B., et al., Growth and characterization of ZnxSn1 – xSe films for use in thin film solar cells, Sol. Energy, 2019, vol. 193, pp. 519–522. https://doi.org/10.1016/j.solener.2019.09.072

    Article  Google Scholar 

  18. Yuan, Z., Li, D., Wang, M., et al., Electroluminescence of SnO2/p-Si heterojunction, J. Appl. Phys. Lett., 2008, vol. 92, art. id. 121908.

  19. Kabulov, R.R., Features of the buffer layer ZnxCd1 – xS for use in thin-film solar cells, Appl. Sol. Energy, vol. 56, no. 5, pp. 383–387, 2020. https://doi.org/10.3103/S0003701X20050096

  20. Approx Band Offsets: Robertson JAP 2006. http://ematsolar.lbl.gov/images. CRC Workfns. http://www.hbcpnetbase.com/articles/12_21_86.pdf. Accessed December 22, 2020.

  21. Saidov, M.S., Khazhiev, M.U., Kobulov, R., Gulyamov, A.G., Zhuraev, Kh.N., and Saidov, D.Sh., Some electrical properties of p-Si/n-SnO2 heterostructures obtained on Si substrates, Dokl. Akad. Nauk, 2020, no. 2, pp. 21–25.

Download references

Funding

This work was financially supported by the Ministry of Innovation Development of the Republic of Uzbekistan as part of fundamental project FA-FA-F-2-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Khazhiev.

Additional information

Translated by S. Kuznetsov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazhiev, M.U., Kabulov, R.R., Gulyamov, A.G. et al. Study of n-SnO2/p-Si Heterostructures Fabricated by Chemical Vapor Deposition Methods. Appl. Sol. Energy 57, 30–33 (2021). https://doi.org/10.3103/S0003701X21010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X21010114

Keywords:

Navigation