Skip to main content
Log in

Photosensors Based on Neutron Doped Silicon

  • BRIEF COMMUNICATIONS
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The problem of preparing a compensated material is solved by the radiation technology method (by irradiating the silicon single-crystal with fast neutrons), which makes it possible to intentionally change the photoelectric parameters of silicon. The changes in the photoelectric parameters of the compensated samples are monitored by measuring the Rd/Rl ratio, and the possibility of creating photo and thermal sensors with identical characteristics, operating within the temperature range of 30 to 100°C, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Marchenko, A.N., Upravlyaemye poluprovodnikovye rezistory (Controlled Semiconductor Resistors), Moscow: Energiya, 1978.

  2. Valiev, S.A., Zikrillaev, Kh.F., and Khonboboev, A., in Fundamental’nye i prikladnye problemy fiziki poluprovodnikov. Materialy mezhdunarodnoi konferentsii (Fundamental and Applied Problems of Semiconductor Physics, Proceedings of the International Conference, Andizhan, Uzbekistan, December 20–21, 2005), pp. 110–111.

  3. Gui, C., Yang, De-R., Ma, X.Y., et al., Oxygen precipitation within denuded zone founded by rapid thermal processing in czochralski silicon wafers, Chin. Phys. Lett., 2005, vol. 22, no. 9, pp. 2407–2410.

    Article  Google Scholar 

  4. Samarin, A.A., Position sensing photosensors, Elektron. Kompon., 2003, no. 7, pp. 103–108.

  5. Novikov, S.G., Gurin, N.T., Korneev, I.V., et al., Bipolar position-sensitive photosensor with a negative differential conductivity, Nano- Mikrosist. Tekh., 2010, no. 12, pp. 35–37.

  6. Bagrintsev, D.Yu. and Ivanov, Yu.B., High sensitivity photosensors for monitoring mechanical movements, Izv. Orlov. Tekh. Univ., Ser.: Fundam. Prikl. Probl. Tekh. Tekhnol., 2008, no. 1 (269), pp. 66–71.

  7. Abrakov, D.D., Sulimov, M.A., Raikov, D.V., et al., Experimental studies of photo-electric characteristics of photoresistors on the basis of lead sulfide, Tekhnosfer. Bezopasn., 2015, no. 4 (9), pp. 66–72.

  8. Smirnov, L.S., Solov’ev, S.P., Stas’, V.F., et al., Legirovanie poluprovodnikov metodom yadernykh reaktsii (Doping of Semiconductors by the Method of Nuclear Reactions), Smirnov, L.S., Ed., Novosibirsk: Nauka, 1981.

    Google Scholar 

  9. Grinshtein, M.M., Photoresistance of industrial automation devices, in Biblioteka po avtomatike (Automation Library), Moscow: Leningrad, 1962, no. 49, pp. 17–36.

  10. Mezhennyi, M.V., Milvidskii, M.G., and Resnick, V.J., Influence of rapid thermal annealing on the specific features of defect generation in silicon wafers during the formation of effective internal getters, J. Surf. Invest.: X‑Ray, Synchrotr. Neutron Tech., 2009, vol. 3, no. 4, pp. 612–619.

    Article  Google Scholar 

  11. Anizan, S., Leong, C.S., Yusri, K.L., et al., The effect of rapid thermal annealing towards the performance of screen-printed Si solar cell, Am. J. Appl. Sci., 2011, vol. 8, no. 3, pp. 267–270.

    Article  Google Scholar 

  12. Vladimirov, G.G., Fizika poverkhnosti tverdykh tel (Physics of Solid Surface) St. Petersburg: Lan’, 2016.

  13. Masakhiko, K., Photodetector, RF Patent No. 2 006 832.

  14. Ivanov, Yu.B. and Kazachkin, A.V., Micropower photosensors with frequency output, Datchiki Sist., 2016.

    Google Scholar 

  15. Garyainov, S.A. and Abezgauz, I.D., Poluprovodnikovye pribory s otritsatel’nym soprotivleniem (Semiconductor Devices with Negative Resistance), Moscow: Energiya, 1975, pp. 87–108.

  16. Şişianu, S.T., Şişianu, T.S., and Railean, S.K., Shallow p-n junctions formed in silicon using pulsed photon annealing, Semiconductors, 2002, vol. 36, no. 5, pp. 581–587.

    Article  Google Scholar 

  17. Denisov, B.N., Zazulin, Ya.A., Shchelkunov, A.V., and P’yanzin, D.V., Influence of kinetic of carrier recombination on the nonlinear distortion coefficient of an amplitude modulator based on a photoresistor optocoupler, Zh. Radioelektron., 2018, no. 8.

Download references

Funding

This work was performed within the project FA-Atekh–2018-176 “Development of the Radiation-Technological Method of Doping Silicon Single-Crystal Films with Sulfur Impurity.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Tashmetov.

Additional information

Translated by M. Samokhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashmetov, M.Y., Makhmudov, S.A., Sulaymonov, A.A. et al. Photosensors Based on Neutron Doped Silicon. Appl. Sol. Energy 55, 71–73 (2019). https://doi.org/10.3103/S0003701X19010134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X19010134

Keywords:

Navigation