Skip to main content
Log in

Semi-Analytical Simulation and Optimization of AlGaAs/GaAs p-i-n Quantum Well Solar Cell

  • Solar Engineering Solar Engineering Material Science
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

This paper deals with a AlGaAs/GaAs p-i-n quantum well solar cell. The doped region are based on AlGaAs semiconductor while the intrinsic region “I” contain multi quantum well (MQW) system AlGaAs/GaAs. A semi-analytical model in the intrinsic region and numerical drift-diffusion model in doped regions are combined to extract the total current density of the cell versus voltage. The current-voltage (J-V) characteristics are generated for the AM1.5 solar spectrum. The effect of the Aluminum molar fraction x (AlxGa1–xAs), the number, the width, the depth of the wells and barriers in the “i” layer and the doping densities on the electrical outputs of the solar cell are also presented. The optimized solar cell reached a conversion efficiency of 28.72% with a short circuit current density of 36.9 mA/cm2 and an open circuit voltage of 0.97 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnham, K.W.J. and Duggan, G., A new approach to high-efficiency multi-band-gap solar cells, J. Appl. Phys., 1990, vol. 67, no. 7, pp. 3490–3493.

    Article  Google Scholar 

  2. Barnham, K.W.J., Ballard, I., Connolly, J.P., et al., Quantum well solar cells, Phys. E (Amsterdam, Neth.), 2002, vol. 1, no. 2, pp. 27–36.

    Article  Google Scholar 

  3. Anderson, N.G., On quantum well solar cell efficiencies, Phys. E (Amsterdam, Neth.), 2002, vol. 1, no. 2, pp. 126–131.

    Article  Google Scholar 

  4. Anderson, N.G., Ideal theory of quantum well solar cells, J. Appl. Phys., 1995, vol. 78, no. 3, pp. 1850–1861.

    Article  Google Scholar 

  5. Rimada, J.C., Modelación de celdas solares p-i-n de AlxGa1-x As con pozos cuánticos en la región, intrínseca, MSc Thesis, Univ. de la Habana, 2000.

    Google Scholar 

  6. Rimada, J.C., Hernandez, L., Connolly, J.P., et al., Quantum and conversion efficiency calculation of AlGaAs/GaAs multiple quantum well solar cells, Phys. Status Solidi B, 2005, vol. 242, no. 9, pp. 1842–1845.

    Article  Google Scholar 

  7. Ramey, S.M. and Khoie, R., Modeling of multiplequantum-well solar cells including capture, escape, and recombination of photoexcited carriers in quantum wells, IEEE Trans. Electron Dev., 2003, vol. 50, no. 5.

    Google Scholar 

  8. Barnham, K., Braun, B., Nelson, J., et al., Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device, Appl. Phys. Lett., 1991, vol. 59, pp. 135–137.

    Article  Google Scholar 

  9. Ragay, F., Wolter, J., Marti, A., et al., Experimental analysis of the efficiency of MQW solar cells, Proceedings of the 12th European Community Photovoltaic Solar Energy Conference, 1994, pp. 1429–1433.

    Google Scholar 

  10. Rimada, J.C. and Hernández, L., A new approach to ideal AlGaAs MQW solar cells, Mod. Phys. Lett. B, 2001, vol. 15, nos. 17–19, pp. 778–781.

    Article  Google Scholar 

  11. Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures, Paris: Editions de Physique, 1988.

    Google Scholar 

  12. ASTM G173-03, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37ºC tilted surface, ASTM Int., 2012.

  13. Paxman, M., Nelson, J., Braun, B., et al., Modeling the spectral response of the quantum well solar cell, J. Appl. Phys., 1993, vol. 74, no. 1, pp. 614–621.

    Article  Google Scholar 

  14. Hamaker H.C., Computer modeling study of the effects of inhomogeneous doping and/or composition in GaAs solar cell devices, J. Appl. Phys., 1985, vol. 58, no. 6, pp. 2344–2351.

    Article  Google Scholar 

  15. Li E.H., Material parameters of InGaAsP and InAl-GaAs systems for use in quantum well structures at low and room temperatures, Phys. E (Amsterdam, Neth.), 2000, vol. 5, pp. 215–273.

    Article  Google Scholar 

  16. Muminov, R.A., Tursunov, M.N., Tursunkulov, O.M., et al., Improvement of the parameters of photovoltaic cells based on gallium arsenide by means of ultrasonic treatment, Appl. Sol. Energy, 2007, vol. 43, no. 3, pp. 130–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afak Meftah.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laznek, S., Meftah, A., Meftah, A. et al. Semi-Analytical Simulation and Optimization of AlGaAs/GaAs p-i-n Quantum Well Solar Cell. Appl. Sol. Energy 54, 261–269 (2018). https://doi.org/10.3103/S0003701X18040126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X18040126

Keywords

Navigation