Applied Solar Energy

, Volume 54, Issue 1, pp 50–60 | Cite as

Research on Thermophysical Properties of Nanoliquids Based on SiO2 Nanoparticles for Use as a Heat-Transfer Medium in Solar-Thermal Converters

  • Zh. S. Akhatov
  • S. Z. Mirzaev
  • Zhiyong Wu
  • S. S. Telyaev
  • E. T. Zhuraev
  • T. I. Zhuraev
Solar Power Plants and Their Application


This paper presents an analysis of the modern state of studies of the thermophysical properties of nanofluids and the heat-transfer mechanism in them. The results of experimental studies of obtaining and determining the dynamic viscosity of the nanofluids (SiO2 + water) with various concentrations of nanoparticles are given. Nanofluids are obtained using a two-stage method in an ultrasonic field with a frequency of 20 kHz. It is shown that, in the SiO2 + water system, nanoparticles with sizes of 7, 12, and 16 nm are most stable. Various SiO2 concentrations in the volume range 0.5–5% were tested, and their thermophysical properties were studied for the purpose of using them as a heat-transfer medium in flat-plate solar collectors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pakhomov, M.A., Protasov, M.V., Terekhov, V.I., and Varaksin, A.Yu., Experimental and numerical investigation of downward gas-dispersed turbulent pipe flow, Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 2107–2116.CrossRefzbMATHGoogle Scholar
  2. 2.
    Choi, S.U.S., Nanofluids: from vision to reality through research, J. Heat Transfer, 2009, vol. 131, pp. 033106–1–033106–9.CrossRefGoogle Scholar
  3. 3.
    Asaka, K., Nakahara, H., and Saito, Y., Nanowelding of a multiwalled carbon nanotube to metal surface and its electron field emission properties, Appl. Phys. Lett., 2008, vol. 92, p. 023114.CrossRefGoogle Scholar
  4. 4.
    Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., Phys. Rev. Lett., 2001, vol. 87, p. 215502.CrossRefGoogle Scholar
  5. 5.
    Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thomson, L.J., Anomalously increased effective thermal conductivities of ethelene glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 2001, vol. 78, pp. 718–720.CrossRefGoogle Scholar
  6. 6.
    Liu, M.-S., Lin Ching-Cheng, M., Tsai, C.Y., and Wang, C.C., Enhance of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3028–3033.CrossRefGoogle Scholar
  7. 7.
    Jana, S., Salehi-Khojin, A., and Zhong, W.H., Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta, 2007, vol. 462, pp. 45–55.CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Gu, H., and Fujii, M., Effective thermal conductivity an thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. Appl. Phys., 2006, vol. 100, no. 4, p. 044325.CrossRefGoogle Scholar
  9. 9.
    Putnam, P.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G., Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 2006, vol. 99, pp. 084308–1–6.CrossRefGoogle Scholar
  10. 10.
    Zhang, X., Gu, H., and Fujii, M., Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Exp. Therm. Fluid Sci., 2007, vol. 31, no. 6, pp. 593–599.CrossRefGoogle Scholar
  11. 11.
    Hamilton, R.L. and Crosser, O.K., Thermal conductivity of heterogeneous two component systems, I & EC Fundam., 1962, vol. 1, no. 3, pp. 187–191.CrossRefGoogle Scholar
  12. 12.
    Wang, X.-Q. and Mujumbar, A.S., Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 2007, vol. 46, pp. 1–19.CrossRefGoogle Scholar
  13. 13.
    Ding, Y.L., Chen, H., Wang, L., et al., Heat transfer intensification using nanofluids, Powder Part., 2007, No. 25, pp. 23–36.CrossRefGoogle Scholar
  14. 14.
    Lee, S., Choi, S., Li, S., and Eastman, J., Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 1999, vol. 121, pp. 280–289.CrossRefGoogle Scholar
  15. 15.
    Wen, D.S. and Ding, Y.L., Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. Thermophys. Heat Transfer, 2004, vol. 18, no. 4, pp. 481–485.CrossRefGoogle Scholar
  16. 16.
    Ding, Y.L., Alias, H., Wen, D.S., and Williams, R.A., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 240–250.CrossRefGoogle Scholar
  17. 17.
    He, Y.R., Jin, Y., Chen, H.S., et al., Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 2272–2281.CrossRefzbMATHGoogle Scholar
  18. 18.
    Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 2003, vol. 125, pp. 567–574.CrossRefGoogle Scholar
  19. 19.
    Hosseini, S.Sh., Shahrjerdi, A., and Vazi-feshenas, Y., A review of relations for physical properties of nanofluids, Austral J. Basic Appl. Sci., 2011, vol. 5, no. 10, pp. 417–435.Google Scholar
  20. 20.
    Mahbubul, I.M., Saidur, R., and Amalina, M.A., Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 874–85.CrossRefGoogle Scholar
  21. 21.
    Venerus D.C. et al., Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications, Appl. Rheol., 2010, vol. 20, no. 4, p. 44582.Google Scholar
  22. 22.
    Rudyak, V.Ya., Dimov, S.V., Kuznetsov, V.V., On the dependence of the viscosity coefficient of nanofluids on particle size and temperature, Tech. Phys. Lett., 2013, vol. 39, no. 9, p.779.CrossRefGoogle Scholar
  23. 23.
    Rudyak, V.Ya., Dimov, S.V., Kuznetsov, V.V., and Bardakhanov, S.P., Measurement of viscosity coefficient of nanoliquid based on ethylene glycol with silicon dioxide particles, Dokl. Akad. Nauk, 2013, vol. 450, no. 1, pp. 43–46.Google Scholar
  24. 24.
    Guzei, D.V., Minakov, A.V., Rudyak, V.Ya., and Dekterev, A.A., Measuring the heat-transfer coefficient of nanofluid based on copper oxide in a cylindrical channel, Tech. Phys. Lett., 2014, vol. 40, no. 3, p.203.CrossRefGoogle Scholar
  25. 25.
    Minakov, A.V., Lobasov, A.S., Rudyak, V.Ya., et al., Measuring of critical density of heat flow during boiling of nanoliquids on a cylindrical heater, Tech. Phys. Lett., 2014, vol. 40, no. 7, p.562.CrossRefGoogle Scholar
  26. 26.
    Batchelor, G.K., Brownian diffusion of particles with hydrodynamic interaction, J. Fluid Mech., 1976, vol. 74, no. 1, pp. 1–29.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Batchelor, G.K., The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 1977, vol. 83, no. 1, pp. 97–117.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Krieger, I.M., Rheology of monodiesperse lattices, Adv. Colloid Interface Sci., 1972, vol. 3, no. 1, pp. 111–136.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Frankel, N.A. and Acrivos, A., On the viscosity of a concentrated suspension of solid spheres, Chem. Eng. Sci., 1967, vol. 22, no. 6, pp. 847–853.CrossRefGoogle Scholar
  30. 30.
    Andrade, E.N. and Nature, C., Viscosity of liquids, Philos. Mag., 1930, vol. 125, pp. 309–324.Google Scholar
  31. 31.
    Andrade, E.N. and Nature, C., A theory of the viscosity of liquids, Philos. Mag., 1934, vol. 17, no. 112, pp. 497–514.CrossRefGoogle Scholar
  32. 32.
    Reid, R., Prausnitz, J., and Sherwood, T., The Properties of Gases and Liquids, New York: McGraw-Hill, 1966.Google Scholar
  33. 33.
    Chen, H., Ding, Y., He, Y., and Tan, C., Rheological behavior of ethylene glycol based titania nanofluids, Chem. Phys. Lett., 2007, vol. 444, pp. 333–337.CrossRefGoogle Scholar
  34. 34.
    Colla, L., Fedele, L., Scattolini, M., and Bobbo, S., Water-based Fe2O3 nanofluid characterization: Thermal conductivity and viscosity measurements and cor relation, Adv. Mech. Eng., 2012, vol. 2012, Article ID 674947.Google Scholar
  35. 35.
    J. Garg et al., Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid, J. Appl. Phys., 2008, vol. 103, p. 074301.CrossRefGoogle Scholar
  36. 36.
    Oueslati, F.S. and Bennace, R., Heterogeneous nanofluids: natural convection heat transfer enhancement, Nanoscale Res. Lett., 2011, vol. 6, p.222.CrossRefGoogle Scholar
  37. 37.
    Namburu, P.K., Kulkarni, D.P., Dandekar, A., and Das, D.K., Experimental investigation of viscosity and specific heat and silicon dioxide nanofluids, Micro Nano Lett., 2007, vol. 2, pp. 67–71.CrossRefGoogle Scholar
  38. 38.
    Namburu, P.K., Kulkarni, D.P., Misra, D., and Das, D.K., Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci., 2007, vol. 32, pp. 397–402.CrossRefGoogle Scholar
  39. 39.
    Nguyen, C.T. et al., Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci., 2008, vol. 47, pp. 103–111.CrossRefGoogle Scholar
  40. 40.
    Rudyak, V.Ya., Belkin, A.A., and Egorov, V.V., On the effective viscosity of nanosuspensions, Tech. Phys., 2009, vol. 54, no. 8, p. 1102.CrossRefGoogle Scholar
  41. 41.
    Namburu, P.K., Kulkarni, D.P., Dandekar, A., and Das, D.K., Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro Nano Lett., 2007, vol. 2, no. 3, pp. 67–71.CrossRefGoogle Scholar
  42. 42.
    Timofeeva, E.V. et al., Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based a-SiC nanofluids, Nanotechnology, 2010, vol. 21, no. 21, p. 215703.CrossRefGoogle Scholar
  43. 43.
    Rudyak, V.Ya., Viscosity of nanofluids. Why it is not described by the classical theories, Adv. Nanopart., 2013, vol. 2, pp. 266–279.CrossRefGoogle Scholar
  44. 44.
    Peterson, G.P. and Li, C.H., Heat and mass transfer in fluids with nanoparticle suspensions, Adv. Heat Transfer, 2006, vol. 39, pp. 257–376.CrossRefGoogle Scholar
  45. 45.
    Rudyak, V.Ya., Belkin, A.A., Tomilina, E.A., and Egorov, V.V., Nanoparticle drag force and effective viscosity of nanosuspensions, in Proceedings of the International Conference on Diffusion in Solids and Liquids, Algarve, 2007, p.70.Google Scholar
  46. 46.
    Bardakhanov, S.P. et al., Nanopowders obtained by evaporating initial substances in an electron accelerator at atmospheric pressure, Dokl. Phys., 2006, vol. 51, no. 3, p.353.CrossRefGoogle Scholar
  47. 47.
    Prasher, P., Song, D., and Wang, J., Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 2006, vol. 89, no. 13, p. 133108.CrossRefGoogle Scholar
  48. 48.
    Chen, H., Ding, Y., and Tan, C., Rheological behavior of nanofluids, New J. Phys., 2007, vol. 9, pp. 367–371.CrossRefGoogle Scholar
  49. 49.
    Rudyak, V.Ya. and Krasnolutskii, S.L., Dependence of the viscosity of nanofluids on nanoparticle size and material, Phys. Lett. A, 2014, vol. 378, pp. 1845–1849.CrossRefGoogle Scholar
  50. 50.
    Yatsuya, S., Tsukasaki, Y., Yamauchi, K., and Mihama, K., Ultrafine particles produced by Vacuum Evaporation onto a Running Oil Substrate (VEROS) and the modified method, J. Cryst. Growth, 1984, vol. 70, pp. 533–535.CrossRefGoogle Scholar
  51. 51.
    Rudyak, V.Ya. and Belkin, A.A., ONanoparticle velocity relaxation in a condensed carrying medium, Tech. Phys. Lett., 2003, vol. 29, no. 7, p.560.CrossRefGoogle Scholar
  52. 52.
    Study of thermophysical properties of nanoliquid hear carriers and their influence on thermotechnical charactericstics of low-potential solar plants, Project Report No. M/Uzb-KNR-19/2015, 2017, p. 75.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Zh. S. Akhatov
    • 1
  • S. Z. Mirzaev
    • 2
  • Zhiyong Wu
    • 3
  • S. S. Telyaev
    • 3
  • E. T. Zhuraev
    • 1
  • T. I. Zhuraev
    • 1
  1. 1.Physical and Technical Institute Physics of the SunAcademy of Sciences of the Republic of UzbekistanTashkentUzbekistan
  2. 2.Institute of Ion-Plasma and Laser TechnologiesAcademy of Science of the Republic of UzbekistanTashkentUzbekistan
  3. 3.Solar Energy LaboratoryInstitute of Electrical Engineering CASBeijingChina

Personalised recommendations