Skip to main content

Experimental study and analysis on novel thermo-electric cooler driven by solar photovoltaic system

Abstract

Experimental study and analysis on thermoelectric cooler driven by solar photovoltaic system has been carried out. Here the research attention is on testing of system performance under solar insolation. Experimental results revealed that unit could maintain the temperature in the cooler at 10–15°C and have a coefficient of performance (COP) of about 0.34. Analysis of thermoelectric cooling system has been conducted on the basis of COP, cooling capacity and environmental issues. Further investigations verified that the performance of the system is a function of solar insolation rate and temperature difference of hot and cold sides of thermoelectric module etc. There subsist most favorable solar insolation rate which allows COP and cooling production to be maximum value respectively. It is anticipated that the cooler would have prospective for cold storage of vaccine, food and drink in remote and rural areas or outdoor conditions where electricity is not available.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Chen, K. and Bwilliam, S.B., Int. J. Energy Res., 1996, vol. 20, pp. 399–417.

    Article  Google Scholar 

  2. 2.

    Chen, J. and Andersen, B., Int. J. Ambient Energy, 1996, vol. 17, pp. 22–28.

    Article  Google Scholar 

  3. 3.

    Winder, E.J. and Ellis, A.B., J. Chem. Edu., 1996, vol. 73, no. 10, pp. 940–946.

    Article  Google Scholar 

  4. 4.

    Min, G. and Rowe, D.M., Solid State Electron., 1999, vol. 43, pp. 923–929.

    Article  Google Scholar 

  5. 5.

    Min, G. and Rowe, D.M., Appl. Energy, 2006, vol. 83, no. 2, pp. 133–152.

    Article  Google Scholar 

  6. 6.

    Khedari, J., Maneewan, S., and Pratinthong, N., Int. J. Ambient Energy, 2001, vol. 22, no. 1, pp. 19–28.

    Article  Google Scholar 

  7. 7.

    Xi, H., Luo, L., and Fraisse, G., Renew. Sust. Energy Rev., 2007, vol. 11, pp. 923–936.

    Article  Google Scholar 

  8. 8.

    Bansal, P.K. and Martin, A., Int. J. Energy Res., 2000, vol. 24, pp. 93–107.

    Article  Google Scholar 

  9. 9.

    Dai, Y.J., Wang, R.Z., and Ni, L., Solar Energy Mater. Solar Cells, 2003, vol. 77, pp. 377–391.

    Article  Google Scholar 

  10. 10.

    Mei, V.C., Chen, F.C., Mathiprakasam, B., and Heenan, P., Trans. ASME J. Solar Energy Eng., 1993, vol. 115, no. 4, pp. 200–205.

    Article  Google Scholar 

  11. 11.

    Arora, R., Kaushik, S.C., and Kumar, R., Proc. IEEE. Int. Conf. Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), New Delhi, 2015, pp. 340–346.

    Google Scholar 

  12. 12.

    Arora, R., Kaushik, S.C., and Kumar, R., Proc. IEEE Int. Conf. on Advances Computer Engineering and Applications (ICACEA), Ghaziabad, 2015, pp. 553–558.

    Google Scholar 

  13. 13.

    Kumar, R., Kaushik, S.C., Kumar, R., and Han, R., Ain Sham Eng. J., 2015, vol. 7, no. 2, pp. 639–651. doi 10.1016/j.asej.2015.06.005

    Google Scholar 

  14. 14.

    Arora, R., Kaushik, S.C., Kumar, R., and Arora, R., Appl. Soft Comput., 2016, vol. 46, pp. 267–283.

    Article  Google Scholar 

  15. 15.

    Saidov, M.S., Appl. Solar Energy, 2008, vol. 44, no. 1, pp. 4–7.

    Article  Google Scholar 

  16. 16.

    Missallam, A.A. and Algero O.M., Appl. Solar Energy, 2010, vol. 46, no. 1, pp. 13–19.

    Article  Google Scholar 

  17. 17.

    Shanmugam, S., Eswaramoorthy, M., and Veerappan, A.R., Appl. Solar Energy, 2011, vol. 47, no. 1, pp. 31–35.

    Article  Google Scholar 

  18. 18.

    Saidov, M.S., Appl. Solar Energy, 2012, vol. 48, no. 2, pp. 67–70.

    Article  Google Scholar 

  19. 19.

    Alshqirate, A., Tarawneh, M., and Hammad, M., Appl. Solar Energy, 2015, vol. 51, no. 1, pp. 1–5.

    Article  Google Scholar 

  20. 20.

    Matchanov, N.A., Zhuraev, Kh. N., Mirzabaev, A.M., and Dzhumabaev, D., Appl. Solar Energy, 2015, vol. 51, no. 2, pp. 144–147.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjana Hans.

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hans, R., Kaushik, S.C. & Manikandan, S. Experimental study and analysis on novel thermo-electric cooler driven by solar photovoltaic system. Appl. Sol. Energy 52, 205–210 (2016). https://doi.org/10.3103/S0003701X16030063

Download citation