Skip to main content
Log in

Energetic and exergetic performance evaluation of natural circulation solar water heating systems

  • Solar Power Plants and Their Application
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

This study deals with the energy and exergy analyses of natural circulation solar water heating (SWH) systems. The system comprises of a single glazed flat plate solar collector (FPSC) with absorber plate of 2 m2, and a separate insulated well-mixed vertical water storage tank (WST) of 125 liters. The variable heat transfer coefficients, water inlet and outlet temperatures of the FPSC; and temperature of heated water stored in the WST are predicted theoretically for each interval. The daily energy and exergy efficiency of the FPSC, WST and SWH system are estimated to be about 39 and 4.36%, 67 and 38.55%, 27 and 1.01%, respectively. It is found that the water inlet temperature, optical efficiency and the solar radiation strongly influence the performance of the FPSC both energetically and exergetically. It is observed that change in the mass flow rate of water improves the exergy efficiency of the FPSC significantly. FPSC has been identified as a critical component of the system where exergy destruction of 308 W/m2 takes place daily as compared to 24 W/m2 in the WST against available solar exergy of about 663 W/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalogirou, S.A., Progr. Energy Combust. Sci., 2004, vol. 30, pp. 231–295.

    Article  Google Scholar 

  2. Hossain, M.S., Saidur, R., Fayaz, H., et al., Renew. Sust. Energy Rev., 2011, vol. 15, pp. 3801–3812.

    Article  Google Scholar 

  3. Jaisankar, S., Ananth, J., Thulasi, S., et al., Renew. Sust. Energy Rev., 2011, vol. 15, pp. 3045–3050.

    Article  Google Scholar 

  4. Shukla, R., Sumathy, K., Erickson, P., and Gong, J., Renew. Sust. Energy Rev., 2013, vol. 19, pp. 173–190.

    Article  Google Scholar 

  5. Gupta, G.L. and Garg, H.P., Solar Energy, 1968, vol. 12, pp. 163–182.

    Article  Google Scholar 

  6. Ong, K.S., Solar Energy, 1974, vol. 16, pp. 137–147.

    Article  Google Scholar 

  7. Ong, K.S., Solar Energy, 1976, vol. 18, pp. 183–191.

    Article  Google Scholar 

  8. Wolf, D., Tamir, A., and Kudish, A.I., Energy, 1980, vol. 5, pp. 191–205.

    Article  Google Scholar 

  9. Sodha, M.S. and Tiwari, G.N., Energy Convers. Manag., 1981, vol. 21, pp. 283–288.

    Article  Google Scholar 

  10. Morrison, G.L. and Braun, J.E., Solar Energy, 1985, vol. 34, pp. 389–405.

    Article  Google Scholar 

  11. Kudish, A.I., Santamaura, P., and Beaufort, P., Solar Energy, 1985, vol. 35, pp. 167–173.

    Article  Google Scholar 

  12. Hobson, P.A. and Norton, B., Solar Energy, 1989, vol. 43, pp. 89–95.

    Article  Google Scholar 

  13. Ayompe, L.M. and Duffy, A., Appl. Therm. Eng., 2013, vol. 58, pp. 447–454.

    Article  Google Scholar 

  14. Essabbani, T., Moufekkir, F., Mezrhab, A., and Naji, H., Appl. Solar Energy, 2015, vol. 51, pp. 22–23.

    Article  Google Scholar 

  15. Redpath, D.A.G., Solar Energy, 2012, vol. 86, pp. 705–715.

    Article  Google Scholar 

  16. Fazilati, M.A. and Alemrajabi, A.A., Energy Convers. Manag., 2013, vol. 71, pp. 138–145.

    Article  Google Scholar 

  17. Zhang, X., You, Sh., Xu, W., et al., Energy Convers. Manag., 2014, vol. 78, pp. 386–392.

    Article  Google Scholar 

  18. Sudhishkumar, S. and Balusamy, T., Renew. Sust. Energy Rev., 2014, vol. 37, pp. 191–198.

    Article  Google Scholar 

  19. Sathyamurthy, R., Samuel, D.G.H., Nagarajan, P.K., and Jaiganesh, V., Appl. Solar Energy, 2015, vol. 51, pp. 95–98.

    Article  Google Scholar 

  20. Luminosu, I. and Fara, L., Energy, 2005, vol. 30, pp. 731–747.

    Article  Google Scholar 

  21. Xiaowu, W. and Ben, H., Renew. Sust. Energy Rev., 2005, vol. 9, pp. 638–645.

    Article  Google Scholar 

  22. Gunerhan, H. and Hepbasli, A., Energy Buildings, 2007, vol. 39, pp. 509–516.

    Article  Google Scholar 

  23. Farahat, S., Sarhaddi, F., and Ajam, H., Renew. Energy, 2009, vol. 34, pp. 1169–1174.

    Article  Google Scholar 

  24. Ceylan, I., Energy Buildings, 2012, vol. 47, pp. 630–635.

    Article  Google Scholar 

  25. Kulkarni, G.N., Kedare, S.B., and Bandyopadhyay, S., Solar Energy, 2007, vol. 81, pp. 958–968.

    Article  Google Scholar 

  26. Duffie, J.A. and Beckman, W.A., Solar Engineering of Thermal Processes, Hoboken, NJ: John Wiley & Sons, 2006.

    Google Scholar 

  27. Indian Standard no. 12933: Part 1 and 2, New Delhi: Bureau of Indian Standards, 2003.

  28. Kalogirou, S.A., Solar Energy Engineering: Processes and Systems, San Diego: Acad. Press, Elsevier, 2009.

    Google Scholar 

  29. Sukhatme, S.P. and Nayak, J.K., Solar Energy: Principles of Thermal Collection and Storage, New Delhi: Tata McGraw Hill, 2011.

    Google Scholar 

  30. Rezaie, B., Reddy, B., and Rosen, M.A., Proc. eSin the Canadian Conf. on Building Simulation, Halifax Nova Scotia, May 1–4, 2012. http://esimca. Assessed May 02, 2014.

    Google Scholar 

  31. Xu, C., Wang, Z., Li, X., and Sun, F., Appl. Therm. Eng., 2011, vol. 31, pp. 3904–3913.

    Article  Google Scholar 

  32. Panwar, N.L., Kaushik, S.C., and Kothari, S.J., Energy, 2012, vol. 4, p. 023111.

    Google Scholar 

  33. Singh, O.K. and Kaushik, S.C., Appl. Therm. Eng., 2013, vol. 51, pp. 787–800.

    Article  Google Scholar 

  34. Reddy, V.S., Kaushik, S.C., and Tyagi, S.K., Clean Techn. Policy, 2013, vol. 15, pp. 133–145.

    Article  Google Scholar 

  35. Panwar, N.L., Appl. Solar Energy, 2014, vol. 50, pp. 133–137.

    Article  Google Scholar 

  36. Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Malabar, FL: Krieger Publishing Company, 1995, pp. 29–56.

    Google Scholar 

  37. Bejan, A., Advanced Engineering Thermodynamics, New Jersey: John Wiley & Sons, 2006, pp. 204–221.

    Google Scholar 

  38. Moran, M.J. and Shapiro, H.N., Fundamentals of Engineering Thermodynamics, New Delhi: Wiley India (P) Ltd., 2010, pp. 272–315.

    Google Scholar 

  39. Petela, R., Engineering Thermodynamics of Thermal Radiation: for Solar Power Utilization, New York: McGraw Hill, 2010, pp. 68, 208–300.

    Google Scholar 

  40. Hepbasli, A., Renew. Sust. Energy Rev., 2008, vol. 12, pp. 593–661.

    Article  Google Scholar 

  41. Petela, R., ASME J. Heat Transf., 1964, vol. 86, pp. 187–192.

    Article  Google Scholar 

  42. Dincer, I. and Rosen, M.A., Exergy: Energy, Environment and Sustainable Development, Elsevier, 2007, pp. 23–34.

    Book  Google Scholar 

  43. Dincer, I. and Rosen, M.A., Thermal Energy Storage: Systems and Applications, John Wiley & Sons, 2011, p. 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Ranjan.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, S.C., Ranjan, K.R. Energetic and exergetic performance evaluation of natural circulation solar water heating systems. Appl. Sol. Energy 52, 16–26 (2016). https://doi.org/10.3103/S0003701X16010059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X16010059

Keywords

Navigation