Skip to main content
Log in

Characterization of mono-crystalline silicon solar cell

  • Heliotechnical Materials Science
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The effects of temperature on the photovoltaic performance of mono-crystalline silicon solar cell have been investigated by current-voltage characteristics and transient photo-response measurements. The fill factor and efficiency values of the solar cell at various temperatures were determined. The variation in the power conversion efficiency and fill factor values is mainly due to the change of short circuit current, open circuit voltage V oc with temperature for the studied mono-crystalline silicon cell. The increase in the short circuit current I sc with the increase of illuminations and temperature is interpreted by the increase in the generation of electron-hole pairs by thermal energy recombination mechanism. The mono-crystalline silicon solar cell exhibits a high efficiency of 14.215% at (AM-1.5) 100 mW/cm2. The obtained results indicate that the studied solar cell exhibits a high stability, sensitivity and quality and it can be used for photovoltaic power generation systems as a clean power source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masaki Shima, Masao Isomura, et al., Solar Energy Mater. Solar Cells, 2005, vol. 85, pp. 167–175.

    Article  Google Scholar 

  2. Green, M.A., Emery, K., Hishikawa, Y., and Warta, W., Solar cell efficiency tables (version 33), Prog. Photovolt. Res. Appl., 2009, vol. 17, pp. 85–94.

    Article  Google Scholar 

  3. Günes, S., Neugebauer, H., and Sariciftci, N.S., Conjugated polymer-based organic solar cells, Chem. Rev., 2007, vol. 107, pp. 1324–1338.

    Article  Google Scholar 

  4. Brabec, C.J., Dyakonov, V., Parisi, J., and Sariciftci, N.S., Organic Photovoltaics Concepts and Realization, New York: Springer, 2003.

    Book  Google Scholar 

  5. Bedeloglu, A.(C.), Demir, A., Bozkurt, Y., and Sariciftci, N.S., Renew. Energy, 2010, vol. 35, pp. 2301–2306.

    Article  Google Scholar 

  6. Bergmann, R.B., Berge, C., Rinke, T.J., et al., Solar Energy Mater. Solar Cells, 2002, vol. 74, pp. 213–218.

    Article  Google Scholar 

  7. Jaehyeong Lee and Lakshminarayan, N., Solar Energy Mater. Solar Cells, 2009, vol. 93, pp. 256–261.

    Article  Google Scholar 

  8. Aberle, A.G., Thin Solid Films, 2006, vols. 511–512, pp. 26–34.

    Article  Google Scholar 

  9. Lennie, A., Abdullah, H., Shaari, S., Sopian, K., American J. Science, 2009, vol. 6, no. 12, pp. 2043–2049.

    Google Scholar 

  10. Luque, A. and Hegedus, S., Handbook of Photovoltaic Science and Engineering, Wiley and Sons, 2003.

    Book  Google Scholar 

  11. Lipiñski, M. and Panek, P., Opto-Electron. Rev., 2003, vol. 11, pp. 291–295.

    Google Scholar 

  12. Markvart, T. and Castafier, L., Practical Handbook of Photovoltaics: Fundamentals and Applications, Elsevier Sci., 2003.

    Google Scholar 

  13. Goetzberger, A., Knobloch, J., and Vob, B., Crystalline Silicon Solar Cells, John Wiley and Sons, 1998.

    Google Scholar 

  14. Sze, S.M., Physics of Semiconductor Device, New York: Wiley, 1981.

    Google Scholar 

  15. Cuculescu, E., Evtodiev, I., Arama, E., Caraman, M., and Moldavian, J., Phys. Sci., 2008, vol. 7, pp. 55–60.

    Google Scholar 

  16. Yahia, I.S., Sakr, G.B., Wojtowicz, T., and Karczewski, G., Semicond. Sci. Technol., 2010, vol. 25, p. 095001.

    Article  Google Scholar 

  17. Bindra, K.S., Suri, N., and Thangaraj, R.J., Non-Cryst. Solids, 2007, vol. 353, p. 1446.

    Article  Google Scholar 

  18. Farag, A.A.M., Yahia, I.S., and El-Metwally, E.G., J. Optoelectron. Adv. Mater., 2009, vol. 11, pp. 204–212.

    Google Scholar 

  19. Yakuphanoglu, F., Sensors Actuators A, 2008, vol. 141, pp. 383–389.

    Article  Google Scholar 

  20. Rose, A., Concepts in Photoconductivity, New York: Intersci., 1960.

    Google Scholar 

  21. Qasrawi, A.F., Cryst. Res. Technol., 2002, vol. 37, pp. 378–390.

    Article  Google Scholar 

  22. Sharma, G.D., Manmeeta Roy, and Roy, M.S., Mater. Sci. Eng. B, 2003, vol. 104, pp. 15–25.

    Article  Google Scholar 

  23. Amalnerkar, D.P., Mater. Chem. Phys., 1999, vol. 60, pp. 1–21.

    Article  Google Scholar 

  24. Mothura, N., Borah, S., Chaliha, P.C., Sarmah, A., and Rahman, A., J. Optoelectron. Adv. Mater., 2008, vol. 10, pp. 1333–1339.

    Google Scholar 

  25. Wary, G., Kachary, T., and Rahman, A., Int. J. Thermophys., 2006, vol. 27, p. 332.

    Article  Google Scholar 

  26. El-Adawi, M.K. and Al-Nuaim, I.A., Desalination, 2007, vol. 209, pp. 91–96.

    Article  Google Scholar 

  27. Mosalam Shaltout, M.A., El-Nicklawy, M.M., Hassan, A.F., et al., Renew. Energy, 2000, vol. 21, pp. 445–458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yahia.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azim, O.A., Yahia, I.S. & Sakr, G.B. Characterization of mono-crystalline silicon solar cell. Appl. Sol. Energy 50, 146–155 (2014). https://doi.org/10.3103/S0003701X14030037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X14030037

Keywords

Navigation