Skip to main content
Log in

Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the State of Tamilnadu (India): a comparative study

  • Solar Radiation
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Enormous potential of solar energy as a clean and pollution free source enrich the global power generation. India, being a tropical country, has high solar radiation and it lies to the north of equator between 8°4′ & 37°6′ North latitude and 68°7′, and 97°5′ East longitude. In southindia, Tamilnadu is located in the extreme south east with an average temperature of gerater than 27.5° (> 81.5 F). In this study, an adaptive neuro-fuzzy inference system (ANFIS) based modelling approach to predict the monthly global solar radiation(MGSR) in Tamilnadu is presented using the real meteorological solar radiation data from the 31 districts of Tamilnadu with different latitude and longitude. The purpose of the study is to compare the accuracy of ANFIS and other soft computing models as found in literature to assess the solar radiation. The performance of the proposed model was tested and compared with other earth region in a case study. The statistical performance parameters such as root mean square error (RMSE), mean bias error (MBE), and coefficient of determination (R2) are presented and compared to validate the performance. The comparative test results prove the ANFIS based prediction are better than other models and furthermore proves its prediction capability for any geographical area with changing meterological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellit, A., Hadj Arab, A., Khorissi, N., and Salhi, H., An ANFIS Based Forecasting for Solar Radiation Data from Sunshine Duration and Ambient Temperature, Proc. IEEE Power Engineering Soc. General Meeting, Tampa, FL, 2007, pp. 1-4244–1298.

  2. Meharrarand, A., Tioursi, M., and Hatti, M., and Boudghène Stambouli, A., Expert Syst. Appl., 2011, vol. 38, pp. 7659–7664.

    Article  Google Scholar 

  3. Jarvensivua, M., Juuso, E., and Ahava, O., Eng. Appl. Artificial Intelligence, 2001, vol. 14, pp. 629–653.

    Article  Google Scholar 

  4. Angstrom, A., Solar and Terrestrial Radiation, Q.J.R. Meteorol. Soc., 1924, vol. 50, pp. 121–125.

    Article  Google Scholar 

  5. Rietveld, M.R., Agric. Mete, 1978, vol. 19, pp. 243–252.

    Article  Google Scholar 

  6. Neuwirth, F., Solar Energy, 1980, vol. 24, pp. 421–426.

    Article  Google Scholar 

  7. Gopinathan, K.K., Solar Energy, 1988, vol. 41, no. 6, pp. 499–502.

    Article  Google Scholar 

  8. Hay, J.E., Solar Energy, 1979, vol. 23, no. 4, pp. 301–307.

    Article  Google Scholar 

  9. Alawi, S.M. and Ilinai, H.A., Renewable Energy, 1988, vol. 14, nos. 1–4, pp. 199–204.

    Google Scholar 

  10. Kemmoku, Y.S., Orita, S., Nakagawa, S., and Sakakibara, T., Solar Energy, 1999, vol. 66, no. 3, pp. 193–199.

    Article  Google Scholar 

  11. Reddy, K.S. and Ranjan, M., Energy Convers. Manag., 2003, vol. 37, no. 2, pp. 183–198.

    Google Scholar 

  12. Elmas, C., Ustun, O., and Sayan, H.H., Expert Syst. Appl., 2008, vol. 34, no. 1.

  13. Sorousha, M. and Parisa, A.B., Expert Syst. Appl., 2009, vol. 36, pp. 7729–7737.

    Article  Google Scholar 

  14. Jang, J., IEEE Trans. Syst., Man Cybernet., 1993, vol. 23, pp. 65–685.

    Article  Google Scholar 

  15. Jang, J.S.R., Rule Extraction Using Generalized Neural Networks, Proc. IFSA World Congr., Brussels, 1991, vol. 4, pp. 82–86.

  16. Avci, E., Hanbay, D., and Varol, A., Expert Syst. Appl., 2007, vol. 33, no. 3, pp. 582–589.

    Article  Google Scholar 

  17. Aznarte, M.J.L., Sanchez, J.M.B., Lugilde, D.N., et al., Expert Syst. Appl., 2007, vol. 32, no. 4, pp. 1218–1225.

    Article  Google Scholar 

  18. Wang, Y.M., Taha, M.S., and Elhag, T.M.S., Expert Syst. Appl., 2008, vol. 34, no. 3, pp. 3099–3106.

    Article  Google Scholar 

  19. Lazzús, J.A., A.A. Pérez Ponce, A.A., and Marín, J., Appl. Solar Energy, 2011, vol. 47, no. 1, pp. 66–73.

    Article  Google Scholar 

  20. Soares, J., Oliveira, A.P., Boznar, M.Z., et al., Appl. Energy, 2004, vol. 79, pp. 201–214.

    Article  Google Scholar 

  21. Mellit, A., Kalogirou, S.A., Shaari, S., et al., Renewable Energy, 2008, vol. 33, pp. 1570–1590.

    Article  Google Scholar 

  22. Chaabene, M. and Ammar, M.B., Renewable Energy, 2008, vol. 33, pp. 1435–1443.

    Article  Google Scholar 

  23. Lam, J.C., Wan, K.K.W., and Yang, L., Manag., 2008, vol. 49, pp. 1080–1090.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

About this article

Cite this article

Sumithira, T.R., Nirmal Kumar, A. Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the State of Tamilnadu (India): a comparative study. Appl. Sol. Energy 48, 140–145 (2012). https://doi.org/10.3103/S0003701X1202020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X1202020X

Keywords

Navigation