Skip to main content
Log in

Experimental comparison of two configurations of hybrid photovoltaic thermal collectors

  • Solar Power Plants and Their Application
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The combination of a thermal collector and a photovoltaic module in a single system allows for increased efficiency of the total conversion of solar energy. A synergistic effect can be obtained in a structure combining these two devices in a judicious manner to those of thermal and photovoltaic system installed separately. Production of total energy from hybrid collector depends on the input (that is to say, the. energy of solar radiation, air temperature and wind speed) and output which is the electric production and the temperature of the system. Thin production also depends on the mode of heal extraction. In this paper, an experimental Study of two configurations of hybrid collectors is described. The configuration that the absorber is made by galvanized steel and in the second, the absorber is a copper serpentine. The advantages of the first configuration are mainly due to low cost and simplicity but the second configuration has the advantage of promoting the heat transfer between cells and fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hendrie, S.D., Photovoltaic/Thermal Collector Development Program, Final Report MIT, 1982.

  2. Wolf, M., Energy Convers., 1976, vol. 16, pp. 79–90.

    Article  Google Scholar 

  3. Evans, D.L., Facinelli, W.A., and Otterbein, R.T., Combined Photovoltaic/Thermal System Studies, Report ASU ERC-T-78017, 1978.

  4. Florschuetz, L.W., in Sharing the Sun Joint Conf., ISES, Winnipeg, 1976.

  5. Florschuetz, L.W., Solar Energy, 1979, vol. 22, pp. 361–366.

    Article  Google Scholar 

  6. Cox, C.H. and Raghuraman, P., Solar Energy, 1985, vol. 35, no. 3, pp. 227–241.

    Article  Google Scholar 

  7. Hendrie, S.D. and Raghuraman, P., Proc. 14th IEEE, San Diego, 1980.

  8. Hendrie, S.D., Raghuraman, P., and Cox, C.H., Proc. 15th IEEE, Orlando, 1981.

  9. Younger, P.R., Kreismanm W.S., Nowlan, M.J., Solomon, J.S., and Strong, S.J., Proc. 15th IEEE, Orlando, 1981.

  10. Kern, E.C. and Russell, M.C., Proc. 15th IEEE, Orlando, 1981.

  11. Kern, E.C. and Russell, M.C., Report. MIT, 1978.

  12. Sheldon, D.B. and Russell, M.C., Proc. 5th Annu. Heat Pump Technology Conf., Stillwater, 1980.

  13. Smith, D.R., Biringer, K.L., and Pritchard, D.A., Proc. 13th IEEE, Washington, 1978.

  14. Andrews, J.W., Report, Brookhaven, 1981.

  15. Gasner, S. and Wen, L., Proc. ASME Conf., Albuquerque, 1982.

  16. Suzuki, A. and Kitamura, S., Jpn. J. Phys., 1979, vol. 19, no. 2, pp. 79–83.

    Google Scholar 

  17. Nakata, Y., Kobe, T., Shibuya, N., Machida, T., Takemoto, T., and Tsuji, T., IEEE PSC, San Diego, 1982.

  18. Karl, H., 4th Int. Laser Congr. Opto-Electronics’79, Munchen, 1979.

  19. Buffet, Ph., EC Contractors Meeting, Brussels, 1982.

  20. Gibart, C., Solar Cells, 1981, no. 4, pp. 71–89.

  21. Komp, R.J., Intersolar, 1985.

  22. Davidson, J. and Komp, R., The Solar Electric Home, Ann Arbor: Aatec Publ., 1983.

    Google Scholar 

  23. Schwarz, R., Rao, K.H.S., Tscharner, R., Proc. 5th EPSEC, Athens, 1983.

  24. Tscharner, R., Curthins, H., Haring, J.P., Schwartz, R., and Shah, A.V., Proc. 5th EPSEC, Athens, 1983.

  25. Lalovic, B., Kiss, Z., and Weakliem, H., Solar Cells, 1986, no. 9, pp. 131–138.

  26. Lalovic, B., Pavlovic, T., Kiss, Z., and van Dine, J., Proc. 8th EPSEC, 1988.

  27. Touafek, K., Haddadi, M., and Malek, A., Int. Conf. on Electrical Engineering, Electronics and Automatic’10 (ICEEA’10), Univ. de Bejaia, Mar. 1, 2010.

  28. Touafek, K., Haddadi, M., and Malek, A., IEEE Trans. Energy Convers., 2011, pp. 176–183.

  29. Touafek, K., Haddadi, M., and Malek, A., Appl. Solar Energy, 2009, vol. 43, no. 3, pp. 181–186.

    Article  Google Scholar 

  30. Touafek, K., Malek, A., and Haddadi, M., Revue des Energies Renouvelables, 2006, vol. 9, no. 3, pp. 143–154.

    Google Scholar 

  31. Touafek, K., Haddadi, M., and Malek, A., Proc. 2nd Int. Conf. on Nuclear and Renewable Energy Resources, Ankara, July 4–7, 2010.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

About this article

Cite this article

Toufek, K., Haddadi, M. & Mk, A. Experimental comparison of two configurations of hybrid photovoltaic thermal collectors. Appl. Sol. Energy 47, 189–194 (2011). https://doi.org/10.3103/S0003701X11030194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X11030194

Keywords

Navigation