Skip to main content
Log in

Numerical Simulation of the Piezo-Optical Strain Sensor Gauge Factor

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The dependence of the piezo-optical strain sensor gauge factor on the geometric parameters of the photoelastic element is obtained by accurate numerical simulations. It is shown that the piezo-optical gauge sensitivity to the applied force is more dependent on the photoelastic element shape than the sensitivity to deformation. A comparative analysis of the gauge factors and other parameters of strain-resistive, piezoelectric, fiber-optic, and piezo-optical strain gauges was carried out. Strain-resistive and fiber-optic sensor gauge factors are three orders of magnitude lower than those of piezo-optical sensors. Correctly calculated piezoelectric sensor gauge factors are also two-three orders of magnitude inferior to those of piezo-optical sensors. A comparison of the basic properties and parameters of modern commerical strain gauges based on different physical principles is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Ageikin, A. N. Kostina, and N. N. Kuznetsova, Control and Regulation Sensors (Mashinostroenie, Moscow, 1965) [in Russian].

    Google Scholar 

  2. A. V. Rzhanov, “Barium Titanate — A New Ferroelectric,” Usp. Fiz. Nauk 38 (4), 461–489 (1949).

    Article  Google Scholar 

  3. V. M. Sharapov, M. P. Musienko, and E. V. Sharapova, Piezoelectric Sensors (Tekhnosfera, Moscow, 2006) [in Russian].

    Google Scholar 

  4. G. A. Lushcheikin, “New Polymer-Containing Piezoelectric Materials,” Fiz. Tverd. Tela 48 (6), 963–964 (2006).

    Google Scholar 

  5. L. Qiu, X. Deng, S. Yuan, et al., “Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences,” Sensors 18 (7), 2218 (2018).

    Article  Google Scholar 

  6. A. S. de Inestrillas, F. Camarena, M. B. Cabo, J. M. Barreiro, and A. Reig, “Design and Performance of a Metal-Shielded Piezoelectric Sensor,” IEEE Sensors J. 17 (3), 1284 (2017).

    Article  Google Scholar 

  7. J. Vitola, F. Pozo, D. A. Tibaduiza, and M. Anaya, “Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes,” IEEE Sensors J. 17 (6), 1252 (2017).

    Article  Google Scholar 

  8. M. Li, W. Cheng, J. Chen, R. Xie, and X. Li, “A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide,” IEEE Sensors J. 17 (2), 394 (2017).

    Article  Google Scholar 

  9. P. Wei, X. Han, D. Xia, T. Liu, and H. Lang, “Novel Fiber-Optic Ring Acoustic Emission Sensor,” Sensors 18 (1), 215 (2018).

    Google Scholar 

  10. M. Drissi-Habti, V. Raman, A. Khadour, and S. Timorian, “Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing,” Sensors 17 (4), 667 (2017).

    Article  Google Scholar 

  11. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (John Wiley & Sons, 2011).

  12. Handbook on Experimental Mechanics, Ed. by A. Kobayashi (Prentice-Hall, Englewood Cliffs, 1987).

    Google Scholar 

  13. T. Kleckers and B. Gunther, “Deformation Measurement: Fiber Optic Sensors from HBM,” Electronics: Science, Technology, Business, No. 1, 76–78 (2008).

  14. A. G. Paulish and P. S. Zagubisalo, “A Photoelastic Element for Piezooptic Strain Gauges,” Tech. Phys. Lett. 41 (7) 632–634 (2015).

    Article  ADS  Google Scholar 

  15. A. G. Paulish, P. S. Zagubisalo, V. N. Barakov, and M. A. Pavlov, “Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges,” Avtometriya 54 (2), 78–84 (2018) [Optoelectron., Instrum. Data Process. 54 (2), 175–180 (2018)].

    Google Scholar 

  16. A. G. Paulish, P. S. Zagubisalo, V. N. Barakov, M. A. Pavlov, and A. V. Poyarkov, “Piezo-Optical Transducer for High Sensitive Strain Gauges,” IEEE Sensors J. 18 (20), 8318–8328 (2018). DOI: https://doi.org/10.1109/JSEN.2018.2865917.

    Google Scholar 

  17. M. M. Frocht, Photoelasticity, Vol. 2 (Wiley-Interscience, NewYork, 1948).

    Google Scholar 

  18. J. F. Doyle, Modern Experimental Stress Analysis (J. Wiley & Sons, Chichester, 2004), pp. 158–170.

    Book  Google Scholar 

  19. Polarization-Optical Method for Stress Analysis (Leningrad State University, Leningrad, 1966) [in Russian].

  20. I. I. Slezinger, “Piezo-Optical Accelerometer,” in Vibrometry (Znanie, Moscow, 1973), pp. 49–51 [in Russian].

    Google Scholar 

  21. I. I. Slezinger, “Piezooptical Measuring Transducers,” Izmerit. Tekhn., No. 11, 45–48 (1985).

  22. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarizing Light (North-Holland, Amsterdam, 1977).

    Google Scholar 

  23. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, Boston, 1990).

    Google Scholar 

  24. P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, New-York, 1979).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Paulish.

Additional information

Russian Text © The Author(s), 2019, published in Avtometriya, 2019, Vol. 55, No. 3, pp. 103–112.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulish, A.G., Zagubisalo, P.S. Numerical Simulation of the Piezo-Optical Strain Sensor Gauge Factor. Optoelectron.Instrument.Proc. 55, 296–302 (2019). https://doi.org/10.3103/S8756699019030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019030129

Keywords

Navigation