Advertisement

Ellipsometric Method of Substrate Temperature Measurement in Low-Temperature Processes of Epitaxy of InSb Layers

  • V. A. ShvetsEmail author
  • I. A. Azarov
  • S. V. Rykhlitskii
  • A. I. Toropov
Optical Information Technologies
  • 3 Downloads

Abstract

The present study is aimed at solving the problem of in situ thermometry of lowtemperature processes of molecular beam epitaxy of indium antimonide. A spectral ellipsometric method for measuring the temperature of InSb epitaxial layers is proposed. The method is based on the temperature dependence of the energy positions of the critical points. The spectra of ellipsometric parameters of the material in the temperature range from 25 to 270 °C are measured. The analysis of these spectra shows that the most temperature-sensitive parameters are the spectral positions of the peaks of the ellipsometric parameter, which are manifested near the critical points E1 and E1 + Δ1. It is found that the dependences of the peak positions on temperature in the above-mentioned temperature range are linear functions with the slope factors of 0.21 and 0.10 nm/°C, respectively. These factors determine the sensitivity of the method and ensure the temperature measurement accuracy within 2–3 °C.

Keywords

indium antimonide ellipsometry surface temperature in situ thermometry critical points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer Academic Publishers, Boston, 1999).CrossRefGoogle Scholar
  2. 2.
    P. C. Klipstein, U. Mizrahi, R. Fraenkel, and I. Shtrichman, “Status of Cooled and Uncooled Infrared Detectors at SCD,” Def. Sci. J. 63 (6), 555–570 (2013).CrossRefGoogle Scholar
  3. 3.
    I. D. Burlakov, K. O. Boltar’, A. E. Mirofyanchenko, et al., “Investigation of InSb Structures Grown by the Method of Molecular Beam Epitaxy,” Usp. Prikl. Fiz. 3 (6), 559–565 (2015).Google Scholar
  4. 4.
    A. K. Bakarov, A. K. Gutakovskii, K. S. Zhuravlev, et al., “Matrix Photodetector Devices Based on InSb Layers Grown by the Method of Molecular Beam Epitaxy,” Zh. Tekh. Fiz. 87 (6), 900–904 (2017).Google Scholar
  5. 5.
    Temperature Measurements: Reference Book, Ed. by O. A. Gerashchenko, A. N. Gordov, A. K. Eremina, et al. (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  6. 6.
    C. McConville, T. Jones, F. Leibsle, et al., “Surface Reconstructions of InSb(100) Observed by Scanning Tunneling Microscopy,” Phys. Rev. B. 50, 14965–14976 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    Radiometric Temperature Measurements. II. Applications, Ed. by Zh. Zhang, B. Tsai, and G. Machin (Elsevier, Amsterdam, 2010).Google Scholar
  8. 8.
    I. A. Azarov, V. A. Shvets, S. A. Dulin, et al., “Polarization Pyrometry of Layered Semiconductor Structures under Conditions of Low-Temperature Technological Processes,” Avtometriya 53 (6), 111–120 (2017) [Optoelectron., Instrum. Data Process. 53 (6), 630–638 (2017)].Google Scholar
  9. 9.
    M. Wakagi, B. G. Hong, H. V. Nguyen, et al., “Characterization of Substrate Temperature and Damage in Diamond Growth Plasmas by Multichannel Spectroellipsometry,” J. Vac. Sci. Technol. A 13 (4), 1917–1923 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    T. Tomita, T. Kinosada, T. Yamashita, et al., “A New Non-Contact Method to Measure Temperature of Surface of Semiconductor Wafers,” Jap. J. Appl. Phys. 25 (11), L925–L927 (1986).CrossRefGoogle Scholar
  11. 11.
    E. V. Spesivtsev, S. V. Rykhlitskii, and V. A. Shvets, “Development of Methods and Instruments for Optical Ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences,” Avtometriya 47 (5), 5–12 (2011) [Optoelectron., Instrum. Data Process. 47 (5), 419–425 (2017)].Google Scholar
  12. 12.
    G. Yu. Sidorov, V. A. Shvets, Yu. G. Sidorov, and V. S. Varavin, “Dynamics of Growth of the Native Oxide of CdxHg1–xTe,” Avtometriya 53 (6), 97–105 (2017) [Optoelectron., Instrum. Data Process. 53 (6), 617–624 (2017)].Google Scholar
  13. 13.
    E. V. Spesivtsev, S. V. Rykhlitsky, V. A. Shvets, et al., “Time-Resolved Microellipsometry for Rapid Thermal Processes Monitoring,” Thin Sol. Films 455–456, 700–704 (2004).Google Scholar
  14. 14.
    A. S. Mardezhov, N. N. Mikhailov, and V. A. Shvets, “Ellipsometric Monitoring of Pre-Epitaxial Preparation of GaAs Substrates and Growing of Epitaxial CdTe Films, Poverkhnost’, No. 12, 92–96 (1990).Google Scholar
  15. 15.
    V. A. Shvets, I. A. Azarov, E. V. Spesivtsev, et al., “Methodical and Instrumental Problems of High-Accuracy Ellipsometric in Situ Diagnostics of the Composition of Mercury–Cadmium–Tellurium Layers in the Molecular Beam Epitaxy Technology,” PTE, No. 6, 87–94 (2016).Google Scholar
  16. 16.
    S. Adachi, “Model Dielectric Constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B 35 (14), 7454–7463 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    S. Adachi and T. Miyazaki, “Ellipsometric and Thermoreflectance Spectra of Epitaxial InSb Films,” Phys. Rev. B 51 (20), 14317–14323 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    A. B. Djurišić, E. H. Li, D. Rakić, and M. L. Majewski, “Modelling the Optical Properties of AlSb, GaSb, and InSb,” Appl. Phys. A 70 (1), 29–32 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    T. Miyazaki and S. Adachi, “Model Dielectric Constants of InSb,” Phys. Stat. Sol. B 163 (1), 299–310 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    T. Miyazaki and S. Adachi, “Analysis of Optical Constants for Sputter-Deposited InSb Films Based on the Interband-Transition Model,” Jap. J. Appl. Phys. 31 (4), 979–983 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    S. Ohkubo, K. Aoki, and D. Eto, “Temperature Dependence of Optical Constants for InSb Films Including Molten Phases,” Appl. Phys. Lett. 92 (1), 011919 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    S. Logothetidis, L. Vina, and M. Cardona, “Temperature Dependence of the Dielectric Function and the Interband Critical Points of InSb,” Phys. Rev. 31 (2), 947–957 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. A. Shvets
    • 1
    • 2
    Email author
  • I. A. Azarov
    • 1
  • S. V. Rykhlitskii
    • 1
  • A. I. Toropov
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations