Analysis and Imaging of Internal Inhomogeneities in Transparent Optical Materials by Three-Dimensional Laser Heterodyne Microprobing

  • I. Sh. SteinbergEmail author
  • P. E. Tverdokhleb
  • A. Yu. Belikov
Optical Information Technologies


A method for studying internal phase inhomogeneities in transparent optical materials by point-to-point three-dimensional laser heterodyne microprobing is proposed. The light microprobe in this case is a traveling micrograting formed in the zone of overlapping of two focused coherent light beams: reference and signal. The size of the microprobe in the x, y, z directions and the degree of influence of spherical aberration with a change in the microprobing depth are estimated. The capabilities of the method are illustrated by examples of detection and subsequent imaging of phase inhomogeneities in the volume of laser ceramics and its random layers.


laser heterodyne microprobing optical materials phase microinhomogeneity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Clarke and C. N. Eberhardt, Microscopic Techniques for Materials Science (Tekhnosfera, Moscow, 2007; CRC Press, 2002).Google Scholar
  2. 2.
    G. S. Kino and T. R. Corle, “Confocal Scanning Optical Microscopy,” Phys. Today. 42 (9), 55–62 (1989).CrossRefGoogle Scholar
  3. 3.
    J. B. Pawley, “Fundamental and Practical Limits in Confocal Light Microscopy,” Scanning 13 (2), 184–198 (1991).CrossRefGoogle Scholar
  4. 4.
    G. G. Levin, G. N. Vishnyakov, “Optical tomography method and microscope for its implementation,” Russian Federation Patent No. 2145109, Publ. 01/27/2000, Byul. No. 3.Google Scholar
  5. 5.
    M. Ishikawa, Y. Kawata, C. Egami, et al., “Reflection-Type Confocal Readout for Multilayered Optical Memory,” Opt. Lett. 23 (22), 1781–1783 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    T. Sawatari, “Optical Heterodyne Scanning Microscope,” Appl. Opt. 12 (11), 2768–2772 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    P. E. Tverdokhleb, Yu. A. Shchepetkin, I. Sh. Steinberg, et al., “Measurement of Energy Spectra of Small-Angle Scattering and Distribution of Optical Microinhomogeneities in Laser Ceramics,” Quantum Electronics 44(6), 588–593 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    S. N. Bagayev, V. V. Osipov, S. M. Vatnik, et al., “Ho: YAG Transparent Abram Method: Fabrication, Optical Properties, and Laser Performance,” Opt. Mat. 50, Pt. A, 47–51 (2015).CrossRefGoogle Scholar
  9. 9.
    H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell. Syst. Tech. Journ. 48 (9), 2909–2947 (1969).CrossRefGoogle Scholar
  10. 10.
    Three-Dimensional Laser Modification of Bulk Photosensitive Materials, Ed. by P. E. Tverdokhleb (Izd. Sib. Otdel. Ross. Akad. Nauk, Novosibirsk, 2012) [in Russian].Google Scholar
  11. 11.
    Yu. N. Dubnishchev and B. S. Rinkevichus, Methods of Laser Doppler Anemometry (Nauka, Moscow, 1982) [in Russian].Google Scholar
  12. 12.
    I. Sh. Steinberg and Yu. A. Shepetkin, “Restoration of the Near-Diffraction-Limited Response Size at Heterodyne Detection of Microholograms, Distorted by Spherical Aberration,” Appl. Opt. 54 (30), 8878–8883 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. Sh. Steinberg
    • 1
    Email author
  • P. E. Tverdokhleb
    • 1
    • 2
    • 3
  • A. Yu. Belikov
    • 1
  1. 1.Institute of Automation and ElectrometrySiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations