Advertisement

Combustion Regime Monitoring by Flame Imaging and Machine Learning

  • S. S. Abdurakipov
  • O. A. GobyzovEmail author
  • M. P. Tokarev
  • V. M. Dulin
Modeling in Physical and Technical Research
  • 9 Downloads

Abstract

A method for automatic determination of combustion regimes using flame images on the basis of a convolutional neural network on labeled data is under consideration. It is shown that the accuracy of regime classification reaches 98% on the flame images of a gas burner. The results of the operation of the convolutional neural network and classification using different linear models are compared.

Keywords

image classification monitoring computer training convolutional neural network flame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Borzov, V. I. Kozik, O. I. Potaturkin, and N. N. Shushkov, “Optimization of Combustion Processes for Gaseous Hydrocarbons Through Variation of Fuel Mixture Content,” Teplofizika Aekomekhanika 11 (2), 309–315 (2004) [Thermophysics Aeromechanics, No. 2, 299–304 (2004)].Google Scholar
  2. 2.
    V. D. Antsygin, S. M. Borzov, S. T. Vas’kov, et al., “Combustion Optimization Based on Flame Parameters,” Avtometry, No. 5, 3–11 (1999).Google Scholar
  3. 3.
    A. González-Cencerrado, B. Pe˜na, and A. Gil, “Coal Flame Characterization by Means of Digital Image Processing in a Semi-Industrial Scale PF Swirl Burner,” Appl. Energy. 94 (C), 375–384 (2012).Google Scholar
  4. 4.
    A. González-Cencerrado, B. Pe˜na, and A. Gil, “Experimental Analysis of Biomass Co-Firing Flames in a Pulverized Fuel Swirl Burner Using a CCD Based Visualization System,” Fuel Process. Technol. 130, 299–310 (2015).CrossRefGoogle Scholar
  5. 5.
    T. S. Draper, D. Zeltner, D. R. Tree, et al., “Two-Dimensional Flame Temperature and Emissivity Measurements of Pulverized Oxy-Coal Flames,” Appl. Energy. 95, 38–44 (2012).CrossRefGoogle Scholar
  6. 6.
    I. Witten, E. Frank, M. Hall, and C. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, San Francisco, 2017).Google Scholar
  7. 7.
    M. T. Hagan, H. B. Demuth, M. H. Beale, and O. de Jesus, Neural Network Design (Martin Hagan, USA, 2014).Google Scholar
  8. 8.
    H. Aghdam and E. Heravi, Guide to Convolutional Neural Networks (Springer, 2017).CrossRefGoogle Scholar
  9. 9.
    S. V. Alekseenko, V. M. Dulin, Y. S. Kozorezov, et al., “Flow Structure of Swirling Turbulent Propane Flames,” Flow, Turbulence Combustion 87 (4), 569–595 (2011).CrossRefzbMATHGoogle Scholar
  10. 10.
    L. J. P. Van der Maaten and G. E. Hinton, “Visualizing High-Dimensional Data Using t-SNE,” J. Mach. Learning Res. 9, 2579–2605 (2008).zbMATHGoogle Scholar
  11. 11.
    A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Proc. of the 25th Intern. Conf. on Neural Information Processing Systems, Nevada, USA, Dec. 3–6, 2012.Google Scholar
  12. 12.
    N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learning Res. 15 (1), 1929–1958 (2014).MathSciNetzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. S. Abdurakipov
    • 1
    • 2
  • O. A. Gobyzov
    • 1
    • 2
    Email author
  • M. P. Tokarev
    • 1
    • 2
  • V. M. Dulin
    • 1
    • 2
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations