Advertisement

Fuzzy Clustering in Problems of Determining the Aerodynamic Characteristics and Modeling the Aircraft Dynamics

  • S. A. Belokon’
  • Yu. N. ZolotukhinEmail author
  • M. N. Filippov
Modeling in Physical and Technical Research
  • 6 Downloads

Abstract

A modified method of fuzzy clustering is proposed for determining the aerodynamic characteristics of an aircraft from flight test data. This approach allows one to describe the aerodynamic characteristics of an aircraft in the form of a black box model with inputs in the form of telemetry data, such as accelerations, angular velocities, thrust, and dynamic pressure, and with outputs in the form of dimensionless aerodynamic coefficients of forces and moments. Results of modeling in the MATLAB/Simulink environment are reported.

Keywords

fuzzy clustering aerodynamic characteristics flight data processing flight modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zierep, Similarity Laws and Modelling (Marcel Dekker, New York, 1971).zbMATHGoogle Scholar
  2. 2.
    D. Kuchemann, The Aerodynamic Design of Aircraft (Pergamon Press, Oxford, 1978).Google Scholar
  3. 3.
    T. J. Chung, Computational Fluid Dynamics (Cambridge University Press, Cambridge, 2002).CrossRefzbMATHGoogle Scholar
  4. 4.
    D. B. McNally, “Full-Envelope Aerodynamic Modeling of the Harrier Aircraft,” NASA Technical Memorandum-88376, 1986.Google Scholar
  5. 5.
    R. V. Jategaonkar, W. Mönnich, D. Fischenberg, and B. Krag, “Identification of C-160 Simulator Data Base from Flight Data,” in Proc. of the 10th IFAC Symposium on System Identification, Copenhagen, Denmark, July 4–6, 1994, pp. 1031–1038.Google Scholar
  6. 6.
    K. Hui, J. Ricciardi, K. Ellis, and D. Tuomey, “Beechjet Flight Test Data Gathering and Level-D Simulator Aerodynamic Mathematical Model Development,” in Proc. of the AIAA Atmospheric Flight Mechanics Conf., Montreal, Canada, August 6–9, 2001 (AIAA 2001-4067).Google Scholar
  7. 7.
    S. Seher-Weiss, “Identification of Nonlinear Aerodynamic Derivatives Using Classical and Extended Local Model Networks,” Aerospace Sci. Technol. 15 (1), 33–44 (2011).CrossRefGoogle Scholar
  8. 8.
    E. L. Tobias, M. B. Tischler, T. Berger, and S. G. Hagerott, “Full Flight-Envelope Simulation and Piloted Fidelity Assessment of a Business Jet Using a Model Stitching Architecture,” in Proc. of the AIAA Modeling and Simulation Technologies Conf., Kissimmee, USA, January 5–9, 2015, pp. 1–38 (AIAA 2015-1594).Google Scholar
  9. 9.
    E. C. Lan and R. C. Chang, “Fuzzy-Logic Analysis of the FDR Data of a Transport Aircraft in Atmospheric Turbulence,” in Fuzzy Logic — Emerging Technologies and Applications, Ed. by E. Dadios (InTech, London, 2012), pp. 119–146.Google Scholar
  10. 10.
    E. A. Morelli, “Real-Time Global Nonlinear Aerodynamic Modeling for Learn-to-Fly,” in Proc. of the AIAA SciTech Conf., San Diego, USA, January 4–8, 2016, pp. 1–22 (AIAA 2016-2010).Google Scholar
  11. 11.
    J. M. Brandon and E. A. Morelli, “Learn-to-Fly Project Overview. Nonlinear Aerodynamic Modelling,” in Proc. of the 113th Aerospace Control and Guidance Systems Committee Meeting, Englewood, USA, March 12–14, 2014.Google Scholar
  12. 12.
    E. A. Morelli, “Flight Test Maneuvers for Efficient Aerodynamic Modeling,” in Proc. of the AIAA Atmospheric Flight Mechanics Conf., Portland, USA, August 8–11, 2011 (AIAA 2011-6672).Google Scholar
  13. 13.
    E. A. Morelli, “Efficient Global Aerodynamic Modeling from Flight Data,” in Proc. of the 50th AIAA Aerospace Sciences Meeting, Nashville, USA, January 9–12, 2012 (AIAA 2012-1050).Google Scholar
  14. 14.
    E. A. Morelli, K. Cunningham, and M. A. Hill, “Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques,” in Proc. of the AIAA Modeling and Simulation Technologies Conf., Boston, USA, August 19–22, 2013 (AIAA 2013-4976).Google Scholar
  15. 15.
    J. M. Brandon and E. A. Morelli, “Real-Time on Board Global Nonlinear Aerodynamic Modeling from Flight Data,” in Proc. of the AIAA Atmospheric Flight Mechanics Conf., Atlanta, USA, June 16–20, 2014 (AIAA 2014-2554).Google Scholar
  16. 16.
    Zh. L. Wang, C. Edward, and J. M. Brandon, “Fuzzy Logic Modeling of Nonlinear Unsteady Aerodynamics,” in Proc. of the 23th AIAA Atmospheric Flight Mechanics Conf., Boston, USA, August 10–12, 1998, pp. 565–580 (AIAA 98-4351).Google Scholar
  17. 17.
    T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Application to Modeling and Control,” IEEE Trans. Syst., Man Cybern. SMC-15 (1), 116–132 (1985).Google Scholar
  18. 18.
    L. Wang, C. E. Lan, and J. M. Brandon, “Fuzzy Logic Modeling of Lateral-Direction Unsteady Aerodynamic,” in Proc. of the AIAA Atmospheric Flight Mechanics Conf., Portland, USA, August 9–11, 1999, pp. 65–87 (AIAA 99-4012).Google Scholar
  19. 19.
    J. M. Brandon and E. A. Morelli, “Nonlinear Aerodynamic Modeling from Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic,” NASA Technical Memorandum-217778, 2012.Google Scholar
  20. 20.
    A. N. Khizer, D. Yaping, S. A. Ali, and X. X. Yang, “Takagi–Sugeno Fuzzy Model Identification for Small Scale Unmanned Helicopter,” TELKOMNIKA Indonesian J. Electrical Eng. 12 (1), 487–495 (2014).Google Scholar
  21. 21.
    F. Saghafi and A. Roudbari, “Modeling and Identification of Fighter Aircraft Nonlinear Flight Dynamics by Using Fuzzy Logic Algorithm,” in Proc. of the Scientific Cooperation’s Intern. Workshops on Engineering Branches, Istanbul, Turkey, August 8–9, 2014, pp. 9–17.Google Scholar
  22. 22.
    R. R. Yager and D. P. Fileu, “Learning of Fuzzy Rules by Mountain Clustering,” Proc. SPIE 2061, 246–254 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    S. L. Chiu, “Fuzzy Model Identification Based on Cluster Estimation,” Journ. Intell. Fuzzy Syst. 2 (3), 267–278 (1994).Google Scholar
  24. 24.
    Flight Dynamics, Ed. by A. M. Mkhitaryan (Mashinostroenie, Moscow, 1978) [in Russian].Google Scholar
  25. 25.
    S. A. Belokon’, Yu. N. Zolotukhin, and M. N. Filippov, “Method of Test Signal Design for Estimating the Aircraft Aerodynamic Parameters,” Avtometriya 53 (4), 59–65 (2017) [Optoelectron., Instrum. Data Process. 53 (4), 358–363 (2017)].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. A. Belokon’
    • 1
  • Yu. N. Zolotukhin
    • 1
    Email author
  • M. N. Filippov
    • 1
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations