Advertisement

Recording of Low-Power Nanosecond Radiation Pulses by a Detector Based on a Thin-Film Pyroelectric Structure

  • V. N. V’yukhin
  • S. D. IvanovEmail author
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • 7 Downloads

Abstract

Results of an experimental study of a thin-film pyroelectric detector of radiation based on strontium barium niobate and used for detecting nanosecond radiation pulses are reported. The possibility of recording 30-ns radiation pulses with the sensitivity of 1 V/W (NEP = 8 · 10−7 W/Hz1/2) is demonstrated.

Keywords

pyroelectric detector thin film nanosecond radiation pulse operational amplifier strontium barium niobate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Auston and A. M. Glass, “Optical Generation of Intense Picosecond Electrical Pulses,” Appl. Phys. Lett. 20 (10), 398–399 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    C. B. Roundy and R. L. Byer, “Subnanosecond Pyroelectric Detector,” Appl. Phys. Lett. 21 (512), 512–515 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Voronov, N. V. Karlov, G. P. Kuz’min, et al., “Fast-Response Pyroelectric Detector on the Basis of Ba0.25Sr0.75Nb2O6 Crystals,” Kvant. Elektron. 4 (9), 1903–1910 (1977).Google Scholar
  4. 4.
    L. M. Dorozhkin, V. V. Lazarev, G. M. Pleshkov, et al., “Thin-Film Pyroelectric Detector on the Basis of Organic Compounds for Measuring the Parameters of Pulsed Laser Radiation,” Kvant. Elektron. 10 (6), 1107–1113 (1983).Google Scholar
  5. 5.
    V. Blackmore, G. Doucas, C. Perry, et al., “First Measurements of the Longitudinal Bunch Profile of a 28.5 GeV Beam Using Coherent Smith–Purcell Radiation,” Phys. Rev. Spec. Topics — Accel. Beams 12 (3), 032803 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    G. Greten, S. Hunsche, U. Knpffer, et al., “Defect and Light Induced Absorption, Luminescence and Dielectric Properties in SBN:Cerium,” Ferroelectrics 185 (1), 289–292 (1996).CrossRefGoogle Scholar
  7. 7.
    B. N. Chichkov, C. Momma, S. Nolte, et al., “Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids,” Appl. Phys. A 63 (2), 109–115 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    V. D. Antsigin, V. M. Egorov, E. G. Kostsov, and V. K. Malinovsky, “Ferroelectric Properties of Thin Strontium Barium Niobate Films,” Ferroelectrics 63 (1), 235–242 (1985).CrossRefGoogle Scholar
  9. 9.
    E. G. Kostsov, “Ferroelectric Barium-Strontium Niobate Films and Multi-Layer Structures,” Ferroelectrics 314 (1), 169–187 (2005).CrossRefGoogle Scholar
  10. 10.
    L. E. Garn and E. J. Sharp, “Use of Low Frequency Sinusoidal Temperature Waves to Separate Pyroelectric Currents from Nonpyroelectric Currents. Pt. I. Theory,” J. Appl. Phys. 53 (12), 8974 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    Data Sheet. ADA4817-1/ADA4817-2, P. 25. http://www.analog.com/media/en/technical-documentation/datasheets/ada4817–1 4817–2.pdf.Google Scholar
  12. 12.
    R. R. Havens, “Theoretical Comparison of Heat Detectors,” JOSA 36, 355–356 (1946).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations