Advertisement

Elastic Properties of Suspended Conducting GaAs/AlGaAs Nanostructures by Means of Atomic Force Microscopy

  • E. Yu. ZhdanovEmail author
  • A. G. Pogosov
  • D. A. Pokhabov
  • M. V. Budantsev
  • A. S. Kozhukhov
  • A. K. Bakarov
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • 11 Downloads

Abstract

This paper demonstrates the applicability of nanoindentation technique using atomic-force microscope cantilever for studying the elastic properties of suspended semiconductor structures on the basis of relatively thick GaAs/AlGaAs membranes in the case when their stiffness significantly exceeds that of the cantilever of atomic-force microscope, which is confirmed by the agreement between the experimentally determined values of both relative and absolute stiffness measured at different points of the investigated structure with theoretical predictions.

Keywords

atomic-force microscopy nanoelectromechanical systems suspended nanostructures GaAs/AlGaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. J. Beenakker and H. van Houten, “Quantum Transport in Semiconductor Nanostructures,” Solid State Phys. 44 (1), 1–228 (1991).Google Scholar
  2. 2.
    G. M. Gusev, Z. D. Kvon, D. I. Lubyshev, et al., “Quantum Transport in -Doped GaAs Layers,” Sov. Phys. Semicond. 25 (4), 364–367 (1991).ADSGoogle Scholar
  3. 3.
    M. V. Budantsev, Z. D. Kvon, A. G. Pogosov, et al., “Mesoscopic Conductance Fluctuations in an Electron Billiard,” JETP Lett. 59 (9), 645–650 (1994).ADSGoogle Scholar
  4. 4.
    M. V. Budantsev, A. G. Pogosov, A. E. Plotnikov, et al., “Giant Hysteresis of Magnetoresistance in the Quantum Hall Effect Regime,” JETP Lett. 86 (4), 264–267 (2007).ADSGoogle Scholar
  5. 5.
    M. V. Budantsev, D. A. Pokhabov, A. G. Pogosov, et al., “Hysteretic Phenomena in a 2DEG in the Quantum Hall Effect Regime, Studied in a Transport Experiment,” Semiconductors 48 (11), 1423–1431 (2014).ADSGoogle Scholar
  6. 6.
    G. M. Gusev, Z. D. Kvon, and A. G. Pogosov, “Thermoelectric Effects in Mesoscopic Conductor,” JETP Lett. 51 (3), 171–174 (1990).ADSGoogle Scholar
  7. 7.
    K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical Systems,” Rev. Sci. Instrum. 76 (6), 061101 (2005).ADSGoogle Scholar
  8. 8.
    A. N. Cleland, J. S. Aldridge, D. C. Driscoll, and A. C. Gossard, “Nanomechanical Displacement Sensing Using a Quantum Point Contact,” Appl. Phys. Lett. 81 (9), 1699–1701 (2002).ADSGoogle Scholar
  9. 9.
    A. A. Shevyrin, A. G. Pogosov, A. K. Bakarov, and A. A. Shklyaev, “Piezoelectric Electro-Mechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas,” Phys. Rev. Lett. 117 (1), 017702 (2016).ADSGoogle Scholar
  10. 10.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, et al., “Actuation and Transduction of Resonant Vibrations in GaAs/AlGaAs-Based Nanoelectromechanical Systems Containing Two-Dimensional Electron Gas,” Appl. Phys. Lett. 106 (18), 183110 (2015).ADSGoogle Scholar
  11. 11.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, et al., “High-Amplitude Dynamics of Nanoelectromechanical Systems Fabricated on the Basis of GaAs/AlGaAs Heterostructures,” Appl. Phys. Lett. 103 (13), 131905 (2013).ADSGoogle Scholar
  12. 12.
    G. A. Steele, A. K. Hüttel, B. Witkamp, et al., “Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion,” Science 325 (5944), 1103–1107 (2009).ADSGoogle Scholar
  13. 13.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, et al., “The Features of Ballistic Electron Transport in a Suspended Quantum Point Contact,” Appl. Phys. Lett. 104 (20), 203102 (2014).ADSGoogle Scholar
  14. 14.
    E. Yu. Zhdanov, A. G. Pogosov, M. V. Budantsev, et al., “Ballistic Magnetotransport in a Suspended Two-Dimensional Electron Gas with Periodic Antidot Lattices,” Semiconductors 51 (1), 8–13 (2017).ADSGoogle Scholar
  15. 15.
    A. G. Pogosov, M. V. Budantsev, A. A. Shevyrin, et al., “Blockade of Tunneling in a Suspended Single-Electron Transistor,” JETP Lett. 87 (3), 150–153 (2008).ADSGoogle Scholar
  16. 16.
    D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, et al., “Lateral-Electric-Field-Induced Spin Polarization in a Suspended GaAs Quantum Point Contact,” Appl. Phys. Lett. 112 (8), 082102 (2018).ADSGoogle Scholar
  17. 17.
    A. G. Pogosov, M. V. Budantsev, E. Yu. Zhdanov, et al., “Electron Transport in Suspended Semiconductor Structures with Two-Dimensional Electron Gas,” Appl. Phys. Lett. 100 (18), 181902 (2012).ADSGoogle Scholar
  18. 18.
    E. Yu. Zhdanov, A. G. Pogosov, M. V. Budantsev, and D. A. Pokhabov, “Ballistic Electron Transport in Structured Suspended Semiconductor Membranes,” AIP Conf. Proc. 1566 (1), 211–212 (2013).ADSGoogle Scholar
  19. 19.
    Y. Okazaki, I. Mahboob, K. Onomitsu, et al., “Gate-Controlled Electromechanical Backaction Induced by a Quantum Dot,” Nature Commun. 7, 11132 (2016).Google Scholar
  20. 20.
    H. Yamaguchi, H. Okamoto, S. Ishihara, and Y. Hirayama, “Motion Detection of a Micro-Mechanical Cantilever Through Magneto-Piezovoltage in Two-Dimensional Electron Systems,” Appl. Phys. Lett. 100 (1), 012106 (2012).ADSGoogle Scholar
  21. 21.
    A. A. Shevyrin, A. G. Pogosov, M. V. Budantsev, et al., “The Role of Euler Buckling Instability in the Fabrication of Nanoelectromechanical Systems on the Basis of GaAs/AlGaAs Heterostructures,” Appl. Phys. Lett. 101 (24), 241916 (2012).ADSGoogle Scholar
  22. 22.
    I. A. Derebezov, A. V. Gaisler, V. A. Gaisler, et al., “Spectroscopy of Single AlInAs Quantum Dots,” Avtometriya 54 (2), 70–77 (2018) [Optoelectron., Instrum. Data Process. 54 (2), 168–174 (2018)].Google Scholar
  23. 23.
    M. Annamalai, S. Mathew, M. Jamali, et al., “Elastic and Nonlinear Response of Nanomechanical Graphene Devices,” J. Micromech. Microeng. 22 (10), 105024 (2012).ADSGoogle Scholar
  24. 24.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science 321 (5887), 385–388 (2008).ADSGoogle Scholar
  25. 25.
    S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and Breaking of Ultrathin MoS2,” ACS Nano. 5 (12), 9703–9709 (2011).Google Scholar
  26. 26.
    P. J. Ryan, G. G. Adams, N. E. McGruer, and S. Muftu, “Contact Scanning Mode AFM for Nanomechanical Testing of Free-Standing Structures,” J. Micromech. Microeng. 16, 1040–1046 (2006).ADSGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity. Vol. 7 (Pergamon Press, Oxford, 1970).Google Scholar
  28. 28.
    S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material Parameters for Use in Research and Device Applications,” J. Appl. Phys. 58 (3), 1–29 (1985).ADSGoogle Scholar
  29. 29.
    J. L. Hutter and J. Bechhoefer, “Calibration of Atomic-Force Microscope Tips,” Rev. Sci. Instrum. 64 (7), 1868–1873 (1993).ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. Yu. Zhdanov
    • 1
    • 2
    Email author
  • A. G. Pogosov
    • 1
    • 2
  • D. A. Pokhabov
    • 1
    • 2
  • M. V. Budantsev
    • 1
  • A. S. Kozhukhov
    • 1
  • A. K. Bakarov
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations