Advertisement

Capacitive Motors with a High Specific Power Capacity

  • I. L. Baginsky
  • E. G. KostsovEmail author
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • 5 Downloads

Abstract

A new class of capacitive motors based on nanometer gaps between the electrodes and possessing specific power capacity values much higher than that of inductive motors is described. Specific features of their operation are analyzed. The specific energy generated in a cycle of electromechanical conversion is estimated. The forces and powers of the considered motors are found to exceed the corresponding parameters of inductive motors by 2–3 orders of magnitude, which offers a possibility of using them in numerous applications.

Keywords

electrostatics nanogap motor ferroelectric free metal film specific energy density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. D’yakov, Yu. K. Bobrov, A. V. Sorokin, and Yu. V. Yurgelenas, Physical Fundamentals of Electric Breakdown in Gases (Moscow Energy Institute, Moscow, 1999) [in Russian].Google Scholar
  2. 2.
    E. Sarajlic, Ch. Yamahata, M. Cordero, and H. Fujita, “An Electrostatic 3-Phase Linear Stepper Motor Fabricated by Vertical Trench Isolation Technology,” J. Micromech. Microeng. 19, 074001 (2009).Google Scholar
  3. 3.
    I. L. Baginsky and E. G. Kostsov, “Capacitive MEMS Accelerometer for Measuring High-g Accelerations,” Avtometriya 53 (3), 107–116 (2017) [Optoelectron., Instrum. Data Process. 53 (3), 294–302 (2017)].Google Scholar
  4. 4.
    I. L. Baginsky, E. G. Kostsov, and A. A. Sokolov, “New Approach to the Development of Impact-Type Electrostatic Microgenerators,” Avtometriya 51 (3), 113–125 (2015) [Optoelectron., Instrum. Data Process. 51 (3), 310–320 (2015)].Google Scholar
  5. 5.
    I. L. Baginsky and E. G. Kostsov, “High-Energy Capacitive Electrostatic Micromotors,” J. Micromech. Microeng. 13 (3), 190–200 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    E. G. Kostsov, “Ferroelectric-Based Electrostatic Micromotors with Nanometer Gaps,” IEEE Trans. Ultrason. Ferr. 53 (12), 2294–2299 (2006).CrossRefGoogle Scholar
  7. 7.
    I. L. Baginsky and E. G. Kostsov, “Electrostatic Micromotor Based on the Ferroelectric Ceramics,” J. Micromech. Microeng. 14 (11), 1569–1575 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    I. L. Baginsky and E. G. Kostsov, “MEMS Based on Thin Ferroelectric Layers,” in Ferroelectrics — Applications. Ch. 2, Ed. by M. Lallart (InTech, Chroatia, 2011), pp. 35–58.Google Scholar
  9. 9.
    V. Babrauskas, “Arc Breakdown in Air over Very Small Gap Distances,” Fire Arson Investigator 65 (3), 40–46 (2015).Google Scholar
  10. 10.
    W. L. Lewit, “Electrical Breakdown and ESD Phenomena for Devices with Nanometer-to-Micron Gaps,” Proc. SPIE 4980, 87–96 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    E. W. Muller, “Field Ionization and Field Ion Microscopy,” Adv. Electron. Electron Phys. 13, 83–179 (1960).CrossRefGoogle Scholar
  12. 12.
    M. L. Karahka, “Physics in High Electric Fields,” Doctoral dissertation (Dallhouse University, Nova Scotia, Canada, 2016).Google Scholar
  13. 13.
    R. R. A. Syms, “Principles of Free-Space Optical Microelectromechanical Systems,” J. Mech. Eng. Sci. Spec. iss. 1–17 (2008).Google Scholar
  14. 14.
    E. G. Kostsov and V. S. Sobolev, “Low-Voltage Element in a Field-Programmable Dynamic Diffraction Grating,” Avtometriya 46 (3), 101–109 (2010) [Optoelectron., Instrum. Data Process. 46 (3), 287–293 (2010)].Google Scholar
  15. 15.
    J. P. Verheggen, W. Khan-Raja, and J. Castracane, “Optimization of Diffractive MEMS for Optical Switching,” J. Exp. Nanosci. 2 (1–2), 87–100 (2007).CrossRefGoogle Scholar
  16. 16.
    V. A. Kalii, “Electromagnetic Calculation of a Magnetoelectric Motor with the Specific Power Capacity of 5 kW/kg or More,” Elektromekh. Kompl. Sist. 13 (2), 5–10 (2017).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations