Fluorimeter with Reflecting Optical Elements for Detecting of Simultaneous Reactions in a Microplate

  • V. P. Chubakov
  • P. A. Chubakov
Optical Information Technologies


This paper describes the autocollimation optical scheme of a fluorimeter that allows detecting different reactions from multiple wells of a microplate at the same time. The image focusing is implemented a spherical mirror that excludes the presence of background illumination and chromatic aberration. The operation of the fluorimeter is demonstrated by measuring a signal from the microplate with 96 and 384 individual wells.


fluorimetry spectroscopy microplate autocollimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Robin, A. T. Ludlow, R. LaRanger, et al., “Comparison of DNA Quantification Methods for Next Generation Sequencing,” Sci. Rep. 6, 24067 (2016).Google Scholar
  2. 2.
    L. E. Morrison and L. M. Stols, “Sensitive Fluorescence-Based Thermodynamic and Kinetic Measurements of DNA Hybridization in Solution,” Biochemistry 32 (12), 3095–3104 (1993).CrossRefGoogle Scholar
  3. 3.
    E. D. Matayoshi, G. T. Wang, G. A. Krafft, and J. Erickson, “Novel Fluorogenic Substrates for Assaying Retroviral Proteases by Resonance Energy Transfer,” Science 247 (4947), 954–958 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    F. Shen, B. Sun, J. E. Kreutz, et al., “Multiplexed Quantification of Nucleic Acids with Large Dynamic Range Using Multivolume Digital RT-PCR on a Rotational SlipChip Tested with HIV and Hepatitis C Viral Load,” J. Amer. Chem. Soc. 133 (44), 17705–17712 (2011).CrossRefGoogle Scholar
  5. 5.
    V. P. Bessmeltsev, P. S. Zavyalov, V. P. Korolkov, et al., “Diffractive Focusing Fan-Out Element for the Parallel DNA Sequencer,” Avtometriya 53 (5), 48–56 (2017) [Optoelectron., Instrum. Data Process. 53 (5), 457–465 (2017)].Google Scholar
  6. 6.
    R. T. Hayden, Z. Gu, J. Ingersoll, et al., “Comparison of Droplet Digital PCR to Real-Time PCR for Quantitative Detection of Cytomegalovirus,” J. Clin. Microbiol. 51 (2), 540–546 (2013).CrossRefGoogle Scholar
  7. 7.
    Q. Xiang, B. Xu, and D. Li, “Miniature Real Time PCR on Chip with Multi-Channel Fiber Optical Fluorescence Detection Module,” Biomed Microdevices 9 (4), 443–449 (2007).CrossRefGoogle Scholar
  8. 8.
    C. T. Wittwer, K. M. Ririe, R. V. Andrew, et al., “The LightCycler: A Microvolume Multisample Fluorimeter with Rapid Temperature Control,” Biotechniques 22 (1), 176–181 (1997).CrossRefGoogle Scholar
  9. 9.
    Hard-ShellR 96-Well PCR Plates, High Profile, Semi Skirted, Black/White #hss9665. Scholar
  10. 10.
    Y. Tamaoki, T. Saga, T. Arai, and Y. Kikuchi, Pat. 7628958 US. Reaction Detecting Device Publ. 8 December 2009.Google Scholar
  11. 11.
    G. S. Landsberg, Elementary Physics Book. Vol. 3. Oscillations and Waves. Optics. Atomic and Nuclear Physics (Nauka, Moscow, 1985) [in Russian].Google Scholar
  12. 12.
    E. A. Iofis, Photographic Engineering (Sov. Entsikl., Moscow, 1981) [in Russian].Google Scholar
  13. 13.
    J. M. Geary, Introduction to Lens Design: With Practical Zemax Examples (Willmann-Bell, Virginia, 2002).Google Scholar
  14. 14.
    H. Kim, S. Dixit, Ch. J. Green, and G. W. Faris, “Nanodroplet Real-Time PCR System with Laser Assisted Heating,” Opt. Express. 17 (1), 218–227 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations