Improving the Reliability of Interference Measurements by using Several Wavelengths

  • I. A. Vykhristyuk
  • R. V. Kulikov
  • E. V. Sysoev
Optical Information Technologies


Methods are proposed to improve the reliability of interference measurements of surface nanotopography with sharp height gradients that lead to ambiguity in determining the phase of interference signals. The effect of the total measurement error on the range of multiwavelength measurements is considered. The results of field experiments demonstrating an increase in the range of measurements of nanotopography by the proposed methods in comparison with single-wavelength measurements are given.


surface topography interference measurements partially coherent interferometry multiwavelength measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. O’Mahony, M. Hill, M. Brunet, et al., “Characterization of Micromechanical Structures Using White-Light Interferometry,” Meas. Sci. Technol. 14 (10), 1807–1814 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    T. Guo, L. Ma, J. P. Chen, et al., “MEMS Surface Characterization Based on White Light Phase Shifting Interferometry,” Opt. Eng. 50 (5), 053606 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    G. N. Vishnyakov, G. G. Levin, and V. L. Minaev, “Automated Interference Tools of the All-Russian Research Institute for Optical and Physical Measurements,” Avtometriya 53 (5), 131–138 (2017). [Optoelectron., Instrum. Data Process. 53 (5), 530–536 (2017)].Google Scholar
  4. 4.
    R. Leach, Optical Measurement of Surface Topography (Springer, Berlin–Heidelberg, 2011).CrossRefGoogle Scholar
  5. 5.
    P. Lehmann, S. Tereschenko, and W. Xie, “Fundamental Aspects of Resolution and Precision in Vertical Scanning White-Light Interferometry,” Surf. Topogr.: Metrol. Prop. 4 (4), 024004 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    E. V. Sysoev, I. V. Golubev, Yu. V. Chugui, and V. A. Shakhmatov, “Measurement of Local Deviations of a Surface Profile Based on Partially Coherent Light Interference,” Avtometriya 40 (5), 4–13 (2004).Google Scholar
  7. 7.
    A. Harasaki, J. Schmit, and J. C. Wyant, “Improved Vertical-Scanning Interferometry,” Appl. Opt. 39 (13), 2107–2115 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    P. U. Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two-Wavelength Micro-Interferometry for 3-D Surface Profiling,” Opt. Lasers Eng. 47 (2), 223–229 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9 (1), 16–26 (2009).CrossRefGoogle Scholar
  10. 10.
    D. G. Abdelsalam and K. Daesuk, “Two-Wavelength in-Line Phase-Shifting Interferometry Based on Polarizing Separation for Accurate Surface Profiling,” Appl. Opt. 50 (33), 6153–6161 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    P. U. Kumar, W. Haifeng, N. K. Mohan, and M. P. Kothiyal, “White Light Interferometry for Surface Profiling with a Colour CCD,” Opt. Lasers Eng. 50 (8), 1084–1088 (2012).CrossRefGoogle Scholar
  12. 12.
    T. Guo, F. Li, J. Chen, et al., “Multi-Wavelength Phase-Shifting Interferometry for Micro-Structures Measurement Based on Color Image Processing in White Light Interference,” Opt. Lasers Eng. 82, 41–47 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Song, X. Dong, J. Xi, et al., “A New Phase Unwrapping Algorithm Based on Three Wavelength Phase Shift Profilometry Method,” Opt. Laser Technol. 45, 319–329 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    J. Xiong, L. Zhong, S. Liu, et al., “Improved Phase Retrieval Method of Dual-Wavelength Interferometry Based on a Shorter Synthetic-Wavelength,” Opt. Exp. 25 (7), 7181–7191 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    E. V. Sysoev, “White-Light Interferometer with Partial Correlogram Scanning,” Avtometriya 43 (1), 107–115 (2007) [Optoelectron., Instrum. Data Process. 43 (1), 83–89 (2007)].Google Scholar
  16. 16.
    E. V. Sysoev, S. S. Kosolobov, R. V. Kulikov, et al., “Interferometric Surface Relief Measurements with Subnano/Picometer Height Resolution,” Meas. Sci. Rev. 17 (5), 213–218 (2017).CrossRefGoogle Scholar
  17. 17.
    E. V. Sysoev, I. A. Vykhristyuk, R. V. Kulikov, et al., “Interference Microscope-Profilometer,” Avtometriya 46 (2), 119–128 (2010) [Optoelectron., Instrum., Data Process. 46 (2), 198–205 (2010)].Google Scholar
  18. 18.
    E. V. Sysoev, I. A. Vykhristyuk, R. V. Kulikov, and V. V. Shirokov, “Determination of the Effective Wavelength of the Light Source in an Interference Profilometer,” in Proc. XI Int. Sci. Congress Interexpo Geo-Siberia-2015, Novosibirsk, 2015, Vol. 2, pp. 39–43.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. A. Vykhristyuk
    • 1
  • R. V. Kulikov
    • 1
  • E. V. Sysoev
    • 1
  1. 1.Technological Design Institute of Scientific Instrument Engineering, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations