Diffractive-Refractive Intraocular Lenses with Binary Structures

  • G. A. LenkovaEmail author
Optical Information Technologies


The paper presents a brief analytical review of papers dealing with the use of simple binaryphase diffractive structures in multifocal artificial eye lenses (intraocular lenses) to increase the focal region. The results of theoretical studies of the influence of spherical aberrations of the eye, the optical power of the diaphragm (pupil diameter), and the duty cycle of the structure on the depth of focus (limits of clear vision) are given. The intensity distribution in diffraction orders (foci) in the simplest binary diffractive-refractive intraocular lenses is analyzed.


intraocular lenses diffractive-refractive lens binary diffractive structures pupil duty cycle of structure depth of focus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Koronkevich, G. A. Lenkova, V. P. Korol’kov, and I. A. Iskakov, “Bifocal Diffractive-Refractive Intraocular Lenses,” Opticheskii Zh. 74 (12), 34–39 (2007).Google Scholar
  2. 2.
    G. J. Swanson, “Diffractive Trifocal Intraocular Lens Design,” US Patent 5344447. Appl 06.09.1994. Priority 12.11.1992.Google Scholar
  3. 3.
    G. A. Lenkova, “Chromatic Aberrations of the Eye Model with Diffractive-Refractive Intraocular Lenses,” Avtometriya 45 (2), 99–114 (2009) [Optoelectron., Instrum. Data Process. 45 (2), 171–183 (2009)].Google Scholar
  4. 4.
    H. A. Weeber and P. Piers, “Intraocular Lens Having Extended Depth of Focus,” US Patent 8747466. Appl. 10.06.2014. Priority 27.08.2007.Google Scholar
  5. 5.
    E. Betensky, R. Hopkins, R. Shannon, et al., Optical Design (Mir, Moscow, 1983) [Russian translation].Google Scholar
  6. 6.
    G. A. Lenkova, “On Focal Shift and Phase Fresnel Lenses,” Optika Spectroskop. 111 (1), 107–114 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    I. G. Pal’chikova and S. G. Rautian, “Diffraction Optical Power of Round and Square Diaphragms,” Avtometriya, No. 5, 12–19 (1999).Google Scholar
  8. 8.
    D. D. Maksutov, Astronomical Optics (Nauka, Leningrad, 1979) [in Russian]Google Scholar
  9. 9.
    V. P. Bessmel’tsev, S. G. Baev, and I. G. Pal’chikova, “Raster Diffraction-Aperture Glasses,” Avtometriya, No. 6, 57–66 (1997).Google Scholar
  10. 10.
    G. A. Lenkova, “Features of Optical Surfaces of Multifocal Diffractive-Refractive Eye Lens,” Avtometriya 53 (5), 17–29 (2017) [Optoelectron., Instrum. Data Process. 53 (5), 431–441 (2017)].Google Scholar
  11. 11.
    G. A. Lenkova, Kinoforms: Synthesis of Phase Structures and Permissible Errors, Preprint 98 (Institute of Automation and Electrometry, Novosibirsk, 1979) [in Russian].Google Scholar
  12. 12.
    G. A. Lenkova, “Features of the Intensity Distribution in the Diffraction Spectrum of Amplitude-Phase Gratings,” Avtometriya, No. 5, 14–26 (1992).Google Scholar
  13. 13.
    M. Born and E. Wolf, Principles of Optics (Nauka, Moscow, 1973) [Russian translation].Google Scholar
  14. 14.
    A. Voskresenskaya, N. Pozdeyev, N. Pashtaev, et al., “Initial Results of Trifocal Diffractive IOL Implantation,” Graefes Arch. Clin. Exp. Ophthalmol. 248 (9), 1299–1306 (2010).CrossRefGoogle Scholar
  15. 15.
    S. B. Yaish, A. Zlotnik, I. Raveh, et al., “Intra-Ocular Omni-Focal Lens with Increased Tolerance to Decentration and Astigmatism,” J. Refract. Surg. 26 (1), 71–76 (2010).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations